1164 lines
33 KiB
JavaScript
1164 lines
33 KiB
JavaScript
/* A JavaScript implementation of the SHA family of hashes, as defined in FIPS
|
|
* PUB 180-2 as well as the corresponding HMAC implementation as defined in
|
|
* FIPS PUB 198a
|
|
*
|
|
* Version 1.3 Copyright Brian Turek 2008-2010
|
|
* Distributed under the BSD License
|
|
* See http://jssha.sourceforge.net/ for more information
|
|
*
|
|
* Several functions taken from Paul Johnson
|
|
*/
|
|
(function ()
|
|
{
|
|
/*
|
|
* Configurable variables. Defaults typically work
|
|
*/
|
|
/* Number of Bits Per character (8 for ASCII, 16 for Unicode) */
|
|
var charSize = 8,
|
|
/* base-64 pad character. "=" for strict RFC compliance */
|
|
b64pad = "",
|
|
/* hex output format. 0 - lowercase; 1 - uppercase */
|
|
hexCase = 0,
|
|
|
|
/*
|
|
* Int_64 is a object for 2 32-bit numbers emulating a 64-bit number
|
|
*
|
|
* @constructor
|
|
* @param {Number} msint_32 The most significant 32-bits of a 64-bit number
|
|
* @param {Number} lsint_32 The least significant 32-bits of a 64-bit number
|
|
*/
|
|
Int_64 = function (msint_32, lsint_32)
|
|
{
|
|
this.highOrder = msint_32;
|
|
this.lowOrder = lsint_32;
|
|
},
|
|
|
|
/*
|
|
* Convert a string to an array of big-endian words
|
|
* If charSize is ASCII, characters >255 have their hi-byte silently
|
|
* ignored.
|
|
*
|
|
* @param {String} str String to be converted to binary representation
|
|
* @return Integer array representation of the parameter
|
|
*/
|
|
str2binb = function (str)
|
|
{
|
|
var bin = [], mask = (1 << charSize) - 1,
|
|
length = str.length * charSize, i;
|
|
|
|
for (i = 0; i < length; i += charSize)
|
|
{
|
|
bin[i >> 5] |= (str.charCodeAt(i / charSize) & mask) <<
|
|
(32 - charSize - (i % 32));
|
|
}
|
|
|
|
return bin;
|
|
},
|
|
|
|
/*
|
|
* Convert a hex string to an array of big-endian words
|
|
*
|
|
* @param {String} str String to be converted to binary representation
|
|
* @return Integer array representation of the parameter
|
|
*/
|
|
hex2binb = function (str)
|
|
{
|
|
var bin = [], length = str.length, i, num;
|
|
|
|
for (i = 0; i < length; i += 2)
|
|
{
|
|
num = parseInt(str.substr(i, 2), 16);
|
|
if (!isNaN(num))
|
|
{
|
|
bin[i >> 3] |= num << (24 - (4 * (i % 8)));
|
|
}
|
|
else
|
|
{
|
|
return "INVALID HEX STRING";
|
|
}
|
|
}
|
|
|
|
return bin;
|
|
},
|
|
|
|
/*
|
|
* Convert an array of big-endian words to a hex string.
|
|
*
|
|
* @private
|
|
* @param {Array} binarray Array of integers to be converted to hexidecimal
|
|
* representation
|
|
* @return Hexidecimal representation of the parameter in String form
|
|
*/
|
|
binb2hex = function (binarray)
|
|
{
|
|
var hex_tab = (hexCase) ? "0123456789ABCDEF" : "0123456789abcdef",
|
|
str = "", length = binarray.length * 4, i, srcByte;
|
|
|
|
for (i = 0; i < length; i += 1)
|
|
{
|
|
srcByte = binarray[i >> 2] >> ((3 - (i % 4)) * 8);
|
|
str += hex_tab.charAt((srcByte >> 4) & 0xF) +
|
|
hex_tab.charAt(srcByte & 0xF);
|
|
}
|
|
|
|
return str;
|
|
},
|
|
|
|
/*
|
|
* Convert an array of big-endian words to a base-64 string
|
|
*
|
|
* @private
|
|
* @param {Array} binarray Array of integers to be converted to base-64
|
|
* representation
|
|
* @return Base-64 encoded representation of the parameter in String form
|
|
*/
|
|
binb2b64 = function (binarray)
|
|
{
|
|
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" +
|
|
"0123456789+/", str = "", length = binarray.length * 4, i, j,
|
|
triplet;
|
|
|
|
for (i = 0; i < length; i += 3)
|
|
{
|
|
triplet = (((binarray[i >> 2] >> 8 * (3 - i % 4)) & 0xFF) << 16) |
|
|
(((binarray[i + 1 >> 2] >> 8 * (3 - (i + 1) % 4)) & 0xFF) << 8) |
|
|
((binarray[i + 2 >> 2] >> 8 * (3 - (i + 2) % 4)) & 0xFF);
|
|
for (j = 0; j < 4; j += 1)
|
|
{
|
|
if (i * 8 + j * 6 <= binarray.length * 32)
|
|
{
|
|
str += tab.charAt((triplet >> 6 * (3 - j)) & 0x3F);
|
|
}
|
|
else
|
|
{
|
|
str += b64pad;
|
|
}
|
|
}
|
|
}
|
|
return str;
|
|
},
|
|
|
|
/*
|
|
* The 32-bit implementation of circular rotate left
|
|
*
|
|
* @private
|
|
* @param {Number} x The 32-bit integer argument
|
|
* @param {Number} n The number of bits to shift
|
|
* @return The x shifted circularly by n bits
|
|
*/
|
|
rotl_32 = function (x, n)
|
|
{
|
|
return (x << n) | (x >>> (32 - n));
|
|
},
|
|
|
|
/*
|
|
* The 32-bit implementation of circular rotate right
|
|
*
|
|
* @private
|
|
* @param {Number} x The 32-bit integer argument
|
|
* @param {Number} n The number of bits to shift
|
|
* @return The x shifted circularly by n bits
|
|
*/
|
|
rotr_32 = function (x, n)
|
|
{
|
|
return (x >>> n) | (x << (32 - n));
|
|
},
|
|
|
|
/*
|
|
* The 64-bit implementation of circular rotate right
|
|
*
|
|
* @private
|
|
* @param {Int_64} x The 64-bit integer argument
|
|
* @param {Number} n The number of bits to shift
|
|
* @return The x shifted circularly by n bits
|
|
*/
|
|
rotr_64 = function (x, n)
|
|
{
|
|
if (n <= 32)
|
|
{
|
|
return new Int_64(
|
|
(x.highOrder >>> n) | (x.lowOrder << (32 - n)),
|
|
(x.lowOrder >>> n) | (x.highOrder << (32 - n))
|
|
);
|
|
}
|
|
else
|
|
{
|
|
return new Int_64(
|
|
(x.lowOrder >>> n) | (x.highOrder << (32 - n)),
|
|
(x.highOrder >>> n) | (x.lowOrder << (32 - n))
|
|
);
|
|
}
|
|
},
|
|
|
|
/*
|
|
* The 32-bit implementation of shift right
|
|
*
|
|
* @private
|
|
* @param {Number} x The 32-bit integer argument
|
|
* @param {Number} n The number of bits to shift
|
|
* @return The x shifted by n bits
|
|
*/
|
|
shr_32 = function (x, n)
|
|
{
|
|
return x >>> n;
|
|
},
|
|
|
|
/*
|
|
* The 64-bit implementation of shift right
|
|
*
|
|
* @private
|
|
* @param {Int_64} x The 64-bit integer argument
|
|
* @param {Number} n The number of bits to shift
|
|
* @return The x shifted by n bits
|
|
*/
|
|
shr_64 = function (x, n)
|
|
{
|
|
if (n <= 32)
|
|
{
|
|
return new Int_64(
|
|
x.highOrder >>> n,
|
|
x.lowOrder >>> n | (x.highOrder << (32 - n))
|
|
);
|
|
}
|
|
else
|
|
{
|
|
return new Int_64(
|
|
0,
|
|
x.highOrder << (32 - n)
|
|
);
|
|
}
|
|
},
|
|
|
|
/*
|
|
* The 32-bit implementation of the NIST specified Parity function
|
|
*
|
|
* @private
|
|
* @param {Number} x The first 32-bit integer argument
|
|
* @param {Number} y The second 32-bit integer argument
|
|
* @param {Number} z The third 32-bit integer argument
|
|
* @return The NIST specified output of the function
|
|
*/
|
|
parity_32 = function (x, y, z)
|
|
{
|
|
return x ^ y ^ z;
|
|
},
|
|
|
|
/*
|
|
* The 32-bit implementation of the NIST specified Ch function
|
|
*
|
|
* @private
|
|
* @param {Number} x The first 32-bit integer argument
|
|
* @param {Number} y The second 32-bit integer argument
|
|
* @param {Number} z The third 32-bit integer argument
|
|
* @return The NIST specified output of the function
|
|
*/
|
|
ch_32 = function (x, y, z)
|
|
{
|
|
return (x & y) ^ (~x & z);
|
|
},
|
|
|
|
/*
|
|
* The 64-bit implementation of the NIST specified Ch function
|
|
*
|
|
* @private
|
|
* @param {Int_64} x The first 64-bit integer argument
|
|
* @param {Int_64} y The second 64-bit integer argument
|
|
* @param {Int_64} z The third 64-bit integer argument
|
|
* @return The NIST specified output of the function
|
|
*/
|
|
ch_64 = function (x, y, z)
|
|
{
|
|
return new Int_64(
|
|
(x.highOrder & y.highOrder) ^ (~x.highOrder & z.highOrder),
|
|
(x.lowOrder & y.lowOrder) ^ (~x.lowOrder & z.lowOrder)
|
|
);
|
|
},
|
|
|
|
/*
|
|
* The 32-bit implementation of the NIST specified Maj function
|
|
*
|
|
* @private
|
|
* @param {Number} x The first 32-bit integer argument
|
|
* @param {Number} y The second 32-bit integer argument
|
|
* @param {Number} z The third 32-bit integer argument
|
|
* @return The NIST specified output of the function
|
|
*/
|
|
maj_32 = function (x, y, z)
|
|
{
|
|
return (x & y) ^ (x & z) ^ (y & z);
|
|
},
|
|
|
|
/*
|
|
* The 64-bit implementation of the NIST specified Maj function
|
|
*
|
|
* @private
|
|
* @param {Int_64} x The first 64-bit integer argument
|
|
* @param {Int_64} y The second 64-bit integer argument
|
|
* @param {Int_64} z The third 64-bit integer argument
|
|
* @return The NIST specified output of the function
|
|
*/
|
|
maj_64 = function (x, y, z)
|
|
{
|
|
return new Int_64(
|
|
(x.highOrder & y.highOrder) ^
|
|
(x.highOrder & z.highOrder) ^
|
|
(y.highOrder & z.highOrder),
|
|
(x.lowOrder & y.lowOrder) ^
|
|
(x.lowOrder & z.lowOrder) ^
|
|
(y.lowOrder & z.lowOrder)
|
|
);
|
|
},
|
|
|
|
/*
|
|
* The 32-bit implementation of the NIST specified Sigma0 function
|
|
*
|
|
* @private
|
|
* @param {Number} x The 32-bit integer argument
|
|
* @return The NIST specified output of the function
|
|
*/
|
|
sigma0_32 = function (x)
|
|
{
|
|
return rotr_32(x, 2) ^ rotr_32(x, 13) ^ rotr_32(x, 22);
|
|
},
|
|
|
|
/*
|
|
* The 64-bit implementation of the NIST specified Sigma0 function
|
|
*
|
|
* @private
|
|
* @param {Int_64} x The 64-bit integer argument
|
|
* @return The NIST specified output of the function
|
|
*/
|
|
sigma0_64 = function (x)
|
|
{
|
|
var rotr28 = rotr_64(x, 28), rotr34 = rotr_64(x, 34),
|
|
rotr39 = rotr_64(x, 39);
|
|
|
|
return new Int_64(
|
|
rotr28.highOrder ^ rotr34.highOrder ^ rotr39.highOrder,
|
|
rotr28.lowOrder ^ rotr34.lowOrder ^ rotr39.lowOrder);
|
|
},
|
|
|
|
/*
|
|
* The 32-bit implementation of the NIST specified Sigma1 function
|
|
*
|
|
* @private
|
|
* @param {Number} x The 32-bit integer argument
|
|
* @return The NIST specified output of the function
|
|
*/
|
|
sigma1_32 = function (x)
|
|
{
|
|
return rotr_32(x, 6) ^ rotr_32(x, 11) ^ rotr_32(x, 25);
|
|
},
|
|
|
|
/*
|
|
* The 64-bit implementation of the NIST specified Sigma1 function
|
|
*
|
|
* @private
|
|
* @param {Int_64} x The 64-bit integer argument
|
|
* @return The NIST specified output of the function
|
|
*/
|
|
sigma1_64 = function (x)
|
|
{
|
|
var rotr14 = rotr_64(x, 14), rotr18 = rotr_64(x, 18),
|
|
rotr41 = rotr_64(x, 41);
|
|
|
|
return new Int_64(
|
|
rotr14.highOrder ^ rotr18.highOrder ^ rotr41.highOrder,
|
|
rotr14.lowOrder ^ rotr18.lowOrder ^ rotr41.lowOrder);
|
|
},
|
|
|
|
/*
|
|
* The 32-bit implementation of the NIST specified Gamma0 function
|
|
*
|
|
* @private
|
|
* @param {Number} x The 32-bit integer argument
|
|
* @return The NIST specified output of the function
|
|
*/
|
|
gamma0_32 = function (x)
|
|
{
|
|
return rotr_32(x, 7) ^ rotr_32(x, 18) ^ shr_32(x, 3);
|
|
},
|
|
|
|
/*
|
|
* The 64-bit implementation of the NIST specified Gamma0 function
|
|
*
|
|
* @private
|
|
* @param {Int_64} x The 64-bit integer argument
|
|
* @return The NIST specified output of the function
|
|
*/
|
|
gamma0_64 = function (x)
|
|
{
|
|
var rotr1 = rotr_64(x, 1), rotr8 = rotr_64(x, 8), shr7 = shr_64(x, 7);
|
|
|
|
return new Int_64(
|
|
rotr1.highOrder ^ rotr8.highOrder ^ shr7.highOrder,
|
|
rotr1.lowOrder ^ rotr8.lowOrder ^ shr7.lowOrder
|
|
);
|
|
},
|
|
|
|
/*
|
|
* The 32-bit implementation of the NIST specified Gamma1 function
|
|
*
|
|
* @private
|
|
* @param {Number} x The 32-bit integer argument
|
|
* @return The NIST specified output of the function
|
|
*/
|
|
gamma1_32 = function (x)
|
|
{
|
|
return rotr_32(x, 17) ^ rotr_32(x, 19) ^ shr_32(x, 10);
|
|
},
|
|
|
|
/*
|
|
* The 64-bit implementation of the NIST specified Gamma1 function
|
|
*
|
|
* @private
|
|
* @param {Int_64} x The 64-bit integer argument
|
|
* @return The NIST specified output of the function
|
|
*/
|
|
gamma1_64 = function (x)
|
|
{
|
|
var rotr19 = rotr_64(x, 19), rotr61 = rotr_64(x, 61),
|
|
shr6 = shr_64(x, 6);
|
|
|
|
return new Int_64(
|
|
rotr19.highOrder ^ rotr61.highOrder ^ shr6.highOrder,
|
|
rotr19.lowOrder ^ rotr61.lowOrder ^ shr6.lowOrder
|
|
);
|
|
},
|
|
|
|
/*
|
|
* Add two 32-bit integers, wrapping at 2^32. This uses 16-bit operations
|
|
* internally to work around bugs in some JS interpreters.
|
|
*
|
|
* @private
|
|
* @param {Number} x The first 32-bit integer argument to be added
|
|
* @param {Number} y The second 32-bit integer argument to be added
|
|
* @return The sum of x + y
|
|
*/
|
|
safeAdd_32_2 = function (x, y)
|
|
{
|
|
var lsw = (x & 0xFFFF) + (y & 0xFFFF),
|
|
msw = (x >>> 16) + (y >>> 16) + (lsw >>> 16);
|
|
|
|
return ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);
|
|
},
|
|
|
|
/*
|
|
* Add four 32-bit integers, wrapping at 2^32. This uses 16-bit operations
|
|
* internally to work around bugs in some JS interpreters.
|
|
*
|
|
* @private
|
|
* @param {Number} a The first 32-bit integer argument to be added
|
|
* @param {Number} b The second 32-bit integer argument to be added
|
|
* @param {Number} c The third 32-bit integer argument to be added
|
|
* @param {Number} d The fourth 32-bit integer argument to be added
|
|
* @return The sum of a + b + c + d
|
|
*/
|
|
safeAdd_32_4 = function (a, b, c, d)
|
|
{
|
|
var lsw = (a & 0xFFFF) + (b & 0xFFFF) + (c & 0xFFFF) + (d & 0xFFFF),
|
|
msw = (a >>> 16) + (b >>> 16) + (c >>> 16) + (d >>> 16) +
|
|
(lsw >>> 16);
|
|
|
|
return ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);
|
|
},
|
|
|
|
/*
|
|
* Add five 32-bit integers, wrapping at 2^32. This uses 16-bit operations
|
|
* internally to work around bugs in some JS interpreters.
|
|
*
|
|
* @private
|
|
* @param {Number} a The first 32-bit integer argument to be added
|
|
* @param {Number} b The second 32-bit integer argument to be added
|
|
* @param {Number} c The third 32-bit integer argument to be added
|
|
* @param {Number} d The fourth 32-bit integer argument to be added
|
|
* @param {Number} e The fifth 32-bit integer argument to be added
|
|
* @return The sum of a + b + c + d + e
|
|
*/
|
|
safeAdd_32_5 = function (a, b, c, d, e)
|
|
{
|
|
var lsw = (a & 0xFFFF) + (b & 0xFFFF) + (c & 0xFFFF) + (d & 0xFFFF) +
|
|
(e & 0xFFFF),
|
|
msw = (a >>> 16) + (b >>> 16) + (c >>> 16) + (d >>> 16) +
|
|
(e >>> 16) + (lsw >>> 16);
|
|
|
|
return ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);
|
|
},
|
|
|
|
/*
|
|
* Add two 64-bit integers, wrapping at 2^64. This uses 16-bit operations
|
|
* internally to work around bugs in some JS interpreters.
|
|
*
|
|
* @private
|
|
* @param {Int_64} x The first 64-bit integer argument to be added
|
|
* @param {Int_64} y The second 64-bit integer argument to be added
|
|
* @return The sum of x + y
|
|
*/
|
|
safeAdd_64_2 = function (x, y)
|
|
{
|
|
var lsw, msw, lowOrder, highOrder;
|
|
|
|
lsw = (x.lowOrder & 0xFFFF) + (y.lowOrder & 0xFFFF);
|
|
msw = (x.lowOrder >>> 16) + (y.lowOrder >>> 16) + (lsw >>> 16);
|
|
lowOrder = ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);
|
|
|
|
lsw = (x.highOrder & 0xFFFF) + (y.highOrder & 0xFFFF) + (msw >>> 16);
|
|
msw = (x.highOrder >>> 16) + (y.highOrder >>> 16) + (lsw >>> 16);
|
|
highOrder = ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);
|
|
|
|
return new Int_64(highOrder, lowOrder);
|
|
},
|
|
|
|
/*
|
|
* Add four 64-bit integers, wrapping at 2^64. This uses 16-bit operations
|
|
* internally to work around bugs in some JS interpreters.
|
|
*
|
|
* @private
|
|
* @param {Int_64} a The first 64-bit integer argument to be added
|
|
* @param {Int_64} b The second 64-bit integer argument to be added
|
|
* @param {Int_64} c The third 64-bit integer argument to be added
|
|
* @param {Int_64} d The fouth 64-bit integer argument to be added
|
|
* @return The sum of a + b + c + d
|
|
*/
|
|
safeAdd_64_4 = function (a, b, c, d)
|
|
{
|
|
var lsw, msw, lowOrder, highOrder;
|
|
|
|
lsw = (a.lowOrder & 0xFFFF) + (b.lowOrder & 0xFFFF) +
|
|
(c.lowOrder & 0xFFFF) + (d.lowOrder & 0xFFFF);
|
|
msw = (a.lowOrder >>> 16) + (b.lowOrder >>> 16) +
|
|
(c.lowOrder >>> 16) + (d.lowOrder >>> 16) + (lsw >>> 16);
|
|
lowOrder = ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);
|
|
|
|
lsw = (a.highOrder & 0xFFFF) + (b.highOrder & 0xFFFF) +
|
|
(c.highOrder & 0xFFFF) + (d.highOrder & 0xFFFF) + (msw >>> 16);
|
|
msw = (a.highOrder >>> 16) + (b.highOrder >>> 16) +
|
|
(c.highOrder >>> 16) + (d.highOrder >>> 16) + (lsw >>> 16);
|
|
highOrder = ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);
|
|
|
|
return new Int_64(highOrder, lowOrder);
|
|
},
|
|
|
|
/*
|
|
* Add five 64-bit integers, wrapping at 2^64. This uses 16-bit operations
|
|
* internally to work around bugs in some JS interpreters.
|
|
*
|
|
* @private
|
|
* @param {Int_64} a The first 64-bit integer argument to be added
|
|
* @param {Int_64} b The second 64-bit integer argument to be added
|
|
* @param {Int_64} c The third 64-bit integer argument to be added
|
|
* @param {Int_64} d The fouth 64-bit integer argument to be added
|
|
* @param {Int_64} e The fouth 64-bit integer argument to be added
|
|
* @return The sum of a + b + c + d + e
|
|
*/
|
|
safeAdd_64_5 = function (a, b, c, d, e)
|
|
{
|
|
var lsw, msw, lowOrder, highOrder;
|
|
|
|
lsw = (a.lowOrder & 0xFFFF) + (b.lowOrder & 0xFFFF) +
|
|
(c.lowOrder & 0xFFFF) + (d.lowOrder & 0xFFFF) +
|
|
(e.lowOrder & 0xFFFF);
|
|
msw = (a.lowOrder >>> 16) + (b.lowOrder >>> 16) +
|
|
(c.lowOrder >>> 16) + (d.lowOrder >>> 16) + (e.lowOrder >>> 16) +
|
|
(lsw >>> 16);
|
|
lowOrder = ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);
|
|
|
|
lsw = (a.highOrder & 0xFFFF) + (b.highOrder & 0xFFFF) +
|
|
(c.highOrder & 0xFFFF) + (d.highOrder & 0xFFFF) +
|
|
(e.highOrder & 0xFFFF) + (msw >>> 16);
|
|
msw = (a.highOrder >>> 16) + (b.highOrder >>> 16) +
|
|
(c.highOrder >>> 16) + (d.highOrder >>> 16) +
|
|
(e.highOrder >>> 16) + (lsw >>> 16);
|
|
highOrder = ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);
|
|
|
|
return new Int_64(highOrder, lowOrder);
|
|
},
|
|
|
|
/*
|
|
* Calculates the SHA-1 hash of the string set at instantiation
|
|
*
|
|
* @private
|
|
* @param {Array} message The binary array representation of the string to
|
|
* hash
|
|
* @param {Number} messageLen The number of bits in the message
|
|
* @return The array of integers representing the SHA-1 hash of message
|
|
*/
|
|
coreSHA1 = function (message, messageLen)
|
|
{
|
|
var W = [], a, b, c, d, e, T, ch = ch_32, parity = parity_32,
|
|
maj = maj_32, rotl = rotl_32, safeAdd_2 = safeAdd_32_2, i, t,
|
|
safeAdd_5 = safeAdd_32_5, appendedMessageLength,
|
|
H = [
|
|
0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0
|
|
],
|
|
K = [
|
|
0x5a827999, 0x5a827999, 0x5a827999, 0x5a827999,
|
|
0x5a827999, 0x5a827999, 0x5a827999, 0x5a827999,
|
|
0x5a827999, 0x5a827999, 0x5a827999, 0x5a827999,
|
|
0x5a827999, 0x5a827999, 0x5a827999, 0x5a827999,
|
|
0x5a827999, 0x5a827999, 0x5a827999, 0x5a827999,
|
|
0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1,
|
|
0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1,
|
|
0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1,
|
|
0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1,
|
|
0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1,
|
|
0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc,
|
|
0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc,
|
|
0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc,
|
|
0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc,
|
|
0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc,
|
|
0xca62c1d6, 0xca62c1d6, 0xca62c1d6, 0xca62c1d6,
|
|
0xca62c1d6, 0xca62c1d6, 0xca62c1d6, 0xca62c1d6,
|
|
0xca62c1d6, 0xca62c1d6, 0xca62c1d6, 0xca62c1d6,
|
|
0xca62c1d6, 0xca62c1d6, 0xca62c1d6, 0xca62c1d6,
|
|
0xca62c1d6, 0xca62c1d6, 0xca62c1d6, 0xca62c1d6
|
|
];
|
|
|
|
/* Append '1' at the end of the binary string */
|
|
message[messageLen >> 5] |= 0x80 << (24 - (messageLen % 32));
|
|
/* Append length of binary string in the position such that the new
|
|
length is a multiple of 512. Logic does not work for even multiples
|
|
of 512 but there can never be even multiples of 512 */
|
|
message[(((messageLen + 65) >> 9) << 4) + 15] = messageLen;
|
|
|
|
appendedMessageLength = message.length;
|
|
|
|
for (i = 0; i < appendedMessageLength; i += 16)
|
|
{
|
|
a = H[0];
|
|
b = H[1];
|
|
c = H[2];
|
|
d = H[3];
|
|
e = H[4];
|
|
|
|
for (t = 0; t < 80; t += 1)
|
|
{
|
|
if (t < 16)
|
|
{
|
|
W[t] = message[t + i];
|
|
}
|
|
else
|
|
{
|
|
W[t] = rotl(W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16], 1);
|
|
}
|
|
|
|
if (t < 20)
|
|
{
|
|
T = safeAdd_5(rotl(a, 5), ch(b, c, d), e, K[t], W[t]);
|
|
}
|
|
else if (t < 40)
|
|
{
|
|
T = safeAdd_5(rotl(a, 5), parity(b, c, d), e, K[t], W[t]);
|
|
}
|
|
else if (t < 60)
|
|
{
|
|
T = safeAdd_5(rotl(a, 5), maj(b, c, d), e, K[t], W[t]);
|
|
} else {
|
|
T = safeAdd_5(rotl(a, 5), parity(b, c, d), e, K[t], W[t]);
|
|
}
|
|
|
|
e = d;
|
|
d = c;
|
|
c = rotl(b, 30);
|
|
b = a;
|
|
a = T;
|
|
}
|
|
|
|
H[0] = safeAdd_2(a, H[0]);
|
|
H[1] = safeAdd_2(b, H[1]);
|
|
H[2] = safeAdd_2(c, H[2]);
|
|
H[3] = safeAdd_2(d, H[3]);
|
|
H[4] = safeAdd_2(e, H[4]);
|
|
}
|
|
|
|
return H;
|
|
},
|
|
|
|
/*
|
|
* Calculates the desired SHA-2 hash of the string set at instantiation
|
|
*
|
|
* @private
|
|
* @param {Array} The binary array representation of the string to hash
|
|
* @param {Number} The number of bits in message
|
|
* @param {String} variant The desired SHA-2 variant
|
|
* @return The array of integers representing the SHA-2 hash of message
|
|
*/
|
|
coreSHA2 = function (message, messageLen, variant)
|
|
{
|
|
var a, b, c, d, e, f, g, h, T1, T2, H, numRounds, lengthPosition, i, t,
|
|
binaryStringInc, binaryStringMult, safeAdd_2, safeAdd_4, safeAdd_5,
|
|
gamma0, gamma1, sigma0, sigma1, ch, maj, Int, K, W = [],
|
|
appendedMessageLength;
|
|
|
|
/* Set up the various function handles and variable for the specific
|
|
* variant */
|
|
if (variant === "SHA-224" || variant === "SHA-256")
|
|
{
|
|
/* 32-bit variant */
|
|
numRounds = 64;
|
|
lengthPosition = (((messageLen + 65) >> 9) << 4) + 15;
|
|
binaryStringInc = 16;
|
|
binaryStringMult = 1;
|
|
Int = Number;
|
|
safeAdd_2 = safeAdd_32_2;
|
|
safeAdd_4 = safeAdd_32_4;
|
|
safeAdd_5 = safeAdd_32_5;
|
|
gamma0 = gamma0_32;
|
|
gamma1 = gamma1_32;
|
|
sigma0 = sigma0_32;
|
|
sigma1 = sigma1_32;
|
|
maj = maj_32;
|
|
ch = ch_32;
|
|
K = [
|
|
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
|
|
0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
|
|
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
|
|
0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
|
|
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
|
|
0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
|
|
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
|
|
0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
|
|
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
|
|
0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
|
|
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
|
|
0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
|
|
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
|
|
0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
|
|
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
|
|
0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2
|
|
];
|
|
|
|
if (variant === "SHA-224")
|
|
{
|
|
H = [
|
|
0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939,
|
|
0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4
|
|
];
|
|
}
|
|
else
|
|
{
|
|
H = [
|
|
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
|
|
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
|
|
];
|
|
}
|
|
}
|
|
else if (variant === "SHA-384" || variant === "SHA-512")
|
|
{
|
|
/* 64-bit variant */
|
|
numRounds = 80;
|
|
lengthPosition = (((messageLen + 128) >> 10) << 5) + 31;
|
|
binaryStringInc = 32;
|
|
binaryStringMult = 2;
|
|
Int = Int_64;
|
|
safeAdd_2 = safeAdd_64_2;
|
|
safeAdd_4 = safeAdd_64_4;
|
|
safeAdd_5 = safeAdd_64_5;
|
|
gamma0 = gamma0_64;
|
|
gamma1 = gamma1_64;
|
|
sigma0 = sigma0_64;
|
|
sigma1 = sigma1_64;
|
|
maj = maj_64;
|
|
ch = ch_64;
|
|
|
|
K = [
|
|
new Int(0x428a2f98, 0xd728ae22), new Int(0x71374491, 0x23ef65cd),
|
|
new Int(0xb5c0fbcf, 0xec4d3b2f), new Int(0xe9b5dba5, 0x8189dbbc),
|
|
new Int(0x3956c25b, 0xf348b538), new Int(0x59f111f1, 0xb605d019),
|
|
new Int(0x923f82a4, 0xaf194f9b), new Int(0xab1c5ed5, 0xda6d8118),
|
|
new Int(0xd807aa98, 0xa3030242), new Int(0x12835b01, 0x45706fbe),
|
|
new Int(0x243185be, 0x4ee4b28c), new Int(0x550c7dc3, 0xd5ffb4e2),
|
|
new Int(0x72be5d74, 0xf27b896f), new Int(0x80deb1fe, 0x3b1696b1),
|
|
new Int(0x9bdc06a7, 0x25c71235), new Int(0xc19bf174, 0xcf692694),
|
|
new Int(0xe49b69c1, 0x9ef14ad2), new Int(0xefbe4786, 0x384f25e3),
|
|
new Int(0x0fc19dc6, 0x8b8cd5b5), new Int(0x240ca1cc, 0x77ac9c65),
|
|
new Int(0x2de92c6f, 0x592b0275), new Int(0x4a7484aa, 0x6ea6e483),
|
|
new Int(0x5cb0a9dc, 0xbd41fbd4), new Int(0x76f988da, 0x831153b5),
|
|
new Int(0x983e5152, 0xee66dfab), new Int(0xa831c66d, 0x2db43210),
|
|
new Int(0xb00327c8, 0x98fb213f), new Int(0xbf597fc7, 0xbeef0ee4),
|
|
new Int(0xc6e00bf3, 0x3da88fc2), new Int(0xd5a79147, 0x930aa725),
|
|
new Int(0x06ca6351, 0xe003826f), new Int(0x14292967, 0x0a0e6e70),
|
|
new Int(0x27b70a85, 0x46d22ffc), new Int(0x2e1b2138, 0x5c26c926),
|
|
new Int(0x4d2c6dfc, 0x5ac42aed), new Int(0x53380d13, 0x9d95b3df),
|
|
new Int(0x650a7354, 0x8baf63de), new Int(0x766a0abb, 0x3c77b2a8),
|
|
new Int(0x81c2c92e, 0x47edaee6), new Int(0x92722c85, 0x1482353b),
|
|
new Int(0xa2bfe8a1, 0x4cf10364), new Int(0xa81a664b, 0xbc423001),
|
|
new Int(0xc24b8b70, 0xd0f89791), new Int(0xc76c51a3, 0x0654be30),
|
|
new Int(0xd192e819, 0xd6ef5218), new Int(0xd6990624, 0x5565a910),
|
|
new Int(0xf40e3585, 0x5771202a), new Int(0x106aa070, 0x32bbd1b8),
|
|
new Int(0x19a4c116, 0xb8d2d0c8), new Int(0x1e376c08, 0x5141ab53),
|
|
new Int(0x2748774c, 0xdf8eeb99), new Int(0x34b0bcb5, 0xe19b48a8),
|
|
new Int(0x391c0cb3, 0xc5c95a63), new Int(0x4ed8aa4a, 0xe3418acb),
|
|
new Int(0x5b9cca4f, 0x7763e373), new Int(0x682e6ff3, 0xd6b2b8a3),
|
|
new Int(0x748f82ee, 0x5defb2fc), new Int(0x78a5636f, 0x43172f60),
|
|
new Int(0x84c87814, 0xa1f0ab72), new Int(0x8cc70208, 0x1a6439ec),
|
|
new Int(0x90befffa, 0x23631e28), new Int(0xa4506ceb, 0xde82bde9),
|
|
new Int(0xbef9a3f7, 0xb2c67915), new Int(0xc67178f2, 0xe372532b),
|
|
new Int(0xca273ece, 0xea26619c), new Int(0xd186b8c7, 0x21c0c207),
|
|
new Int(0xeada7dd6, 0xcde0eb1e), new Int(0xf57d4f7f, 0xee6ed178),
|
|
new Int(0x06f067aa, 0x72176fba), new Int(0x0a637dc5, 0xa2c898a6),
|
|
new Int(0x113f9804, 0xbef90dae), new Int(0x1b710b35, 0x131c471b),
|
|
new Int(0x28db77f5, 0x23047d84), new Int(0x32caab7b, 0x40c72493),
|
|
new Int(0x3c9ebe0a, 0x15c9bebc), new Int(0x431d67c4, 0x9c100d4c),
|
|
new Int(0x4cc5d4be, 0xcb3e42b6), new Int(0x597f299c, 0xfc657e2a),
|
|
new Int(0x5fcb6fab, 0x3ad6faec), new Int(0x6c44198c, 0x4a475817)
|
|
];
|
|
|
|
if (variant === "SHA-384")
|
|
{
|
|
H = [
|
|
new Int(0xcbbb9d5d, 0xc1059ed8), new Int(0x0629a292a, 0x367cd507),
|
|
new Int(0x9159015a, 0x3070dd17), new Int(0x0152fecd8, 0xf70e5939),
|
|
new Int(0x67332667, 0xffc00b31), new Int(0x98eb44a87, 0x68581511),
|
|
new Int(0xdb0c2e0d, 0x64f98fa7), new Int(0x047b5481d, 0xbefa4fa4)
|
|
];
|
|
}
|
|
else
|
|
{
|
|
H = [
|
|
new Int(0x6a09e667, 0xf3bcc908), new Int(0xbb67ae85, 0x84caa73b),
|
|
new Int(0x3c6ef372, 0xfe94f82b), new Int(0xa54ff53a, 0x5f1d36f1),
|
|
new Int(0x510e527f, 0xade682d1), new Int(0x9b05688c, 0x2b3e6c1f),
|
|
new Int(0x1f83d9ab, 0xfb41bd6b), new Int(0x5be0cd19, 0x137e2179)
|
|
];
|
|
}
|
|
}
|
|
|
|
/* Append '1' at the end of the binary string */
|
|
message[messageLen >> 5] |= 0x80 << (24 - messageLen % 32);
|
|
/* Append length of binary string in the position such that the new
|
|
* length is correct */
|
|
message[lengthPosition] = messageLen;
|
|
|
|
appendedMessageLength = message.length;
|
|
|
|
for (i = 0; i < appendedMessageLength; i += binaryStringInc)
|
|
{
|
|
a = H[0];
|
|
b = H[1];
|
|
c = H[2];
|
|
d = H[3];
|
|
e = H[4];
|
|
f = H[5];
|
|
g = H[6];
|
|
h = H[7];
|
|
|
|
for (t = 0; t < numRounds; t += 1)
|
|
{
|
|
if (t < 16)
|
|
{
|
|
/* Bit of a hack - for 32-bit, the second term is ignored */
|
|
W[t] = new Int(message[t * binaryStringMult + i],
|
|
message[t * binaryStringMult + i + 1]);
|
|
}
|
|
else
|
|
{
|
|
W[t] = safeAdd_4(
|
|
gamma1(W[t - 2]), W[t - 7],
|
|
gamma0(W[t - 15]), W[t - 16]
|
|
);
|
|
}
|
|
|
|
T1 = safeAdd_5(h, sigma1(e), ch(e, f, g), K[t], W[t]);
|
|
T2 = safeAdd_2(sigma0(a), maj(a, b, c));
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = safeAdd_2(d, T1);
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = safeAdd_2(T1, T2);
|
|
}
|
|
|
|
H[0] = safeAdd_2(a, H[0]);
|
|
H[1] = safeAdd_2(b, H[1]);
|
|
H[2] = safeAdd_2(c, H[2]);
|
|
H[3] = safeAdd_2(d, H[3]);
|
|
H[4] = safeAdd_2(e, H[4]);
|
|
H[5] = safeAdd_2(f, H[5]);
|
|
H[6] = safeAdd_2(g, H[6]);
|
|
H[7] = safeAdd_2(h, H[7]);
|
|
}
|
|
|
|
switch (variant)
|
|
{
|
|
case "SHA-224":
|
|
return [
|
|
H[0], H[1], H[2], H[3],
|
|
H[4], H[5], H[6]
|
|
];
|
|
case "SHA-256":
|
|
return H;
|
|
case "SHA-384":
|
|
return [
|
|
H[0].highOrder, H[0].lowOrder,
|
|
H[1].highOrder, H[1].lowOrder,
|
|
H[2].highOrder, H[2].lowOrder,
|
|
H[3].highOrder, H[3].lowOrder,
|
|
H[4].highOrder, H[4].lowOrder,
|
|
H[5].highOrder, H[5].lowOrder
|
|
];
|
|
case "SHA-512":
|
|
return [
|
|
H[0].highOrder, H[0].lowOrder,
|
|
H[1].highOrder, H[1].lowOrder,
|
|
H[2].highOrder, H[2].lowOrder,
|
|
H[3].highOrder, H[3].lowOrder,
|
|
H[4].highOrder, H[4].lowOrder,
|
|
H[5].highOrder, H[5].lowOrder,
|
|
H[6].highOrder, H[6].lowOrder,
|
|
H[7].highOrder, H[7].lowOrder
|
|
];
|
|
default:
|
|
/* This should never be reached */
|
|
return [];
|
|
}
|
|
},
|
|
|
|
/*
|
|
* jsSHA is the workhorse of the library. Instantiate it with the string to
|
|
* be hashed as the parameter
|
|
*
|
|
* @constructor
|
|
* @param {String} srcString The string to be hashed
|
|
* @param {String} inputFormat The format of srcString, ASCII or HEX
|
|
*/
|
|
jsSHA = function (srcString, inputFormat)
|
|
{
|
|
|
|
this.sha1 = null;
|
|
this.sha224 = null;
|
|
this.sha256 = null;
|
|
this.sha384 = null;
|
|
this.sha512 = null;
|
|
|
|
this.strBinLen = null;
|
|
this.strToHash = null;
|
|
|
|
/* Convert the input string into the correct type */
|
|
if ("HEX" === inputFormat)
|
|
{
|
|
if (0 !== (srcString.length % 2))
|
|
{
|
|
return "TEXT MUST BE IN BYTE INCREMENTS";
|
|
}
|
|
this.strBinLen = srcString.length * 4;
|
|
this.strToHash = hex2binb(srcString);
|
|
}
|
|
else if (("ASCII" === inputFormat) ||
|
|
('undefined' === typeof(inputFormat)))
|
|
{
|
|
this.strBinLen = srcString.length * charSize;
|
|
this.strToHash = str2binb(srcString);
|
|
}
|
|
else
|
|
{
|
|
return "UNKNOWN TEXT INPUT TYPE";
|
|
}
|
|
};
|
|
|
|
jsSHA.prototype = {
|
|
/*
|
|
* Returns the desired SHA hash of the string specified at instantiation
|
|
* using the specified parameters
|
|
*
|
|
* @param {String} variant The desired SHA variant (SHA-1, SHA-224,
|
|
* SHA-256, SHA-384, or SHA-512)
|
|
* @param {String} format The desired output formatting (B64 or HEX)
|
|
* @return The string representation of the hash in the format specified
|
|
*/
|
|
getHash : function (variant, format)
|
|
{
|
|
var formatFunc = null, message = this.strToHash.slice();
|
|
|
|
switch (format)
|
|
{
|
|
case "HEX":
|
|
formatFunc = binb2hex;
|
|
break;
|
|
case "B64":
|
|
formatFunc = binb2b64;
|
|
break;
|
|
default:
|
|
return "FORMAT NOT RECOGNIZED";
|
|
}
|
|
|
|
switch (variant)
|
|
{
|
|
case "SHA-1":
|
|
if (null === this.sha1)
|
|
{
|
|
this.sha1 = coreSHA1(message, this.strBinLen);
|
|
}
|
|
return formatFunc(this.sha1);
|
|
case "SHA-224":
|
|
if (null === this.sha224)
|
|
{
|
|
this.sha224 = coreSHA2(message, this.strBinLen, variant);
|
|
}
|
|
return formatFunc(this.sha224);
|
|
case "SHA-256":
|
|
if (null === this.sha256)
|
|
{
|
|
this.sha256 = coreSHA2(message, this.strBinLen, variant);
|
|
}
|
|
return formatFunc(this.sha256);
|
|
case "SHA-384":
|
|
if (null === this.sha384)
|
|
{
|
|
this.sha384 = coreSHA2(message, this.strBinLen, variant);
|
|
}
|
|
return formatFunc(this.sha384);
|
|
case "SHA-512":
|
|
if (null === this.sha512)
|
|
{
|
|
this.sha512 = coreSHA2(message, this.strBinLen, variant);
|
|
}
|
|
return formatFunc(this.sha512);
|
|
default:
|
|
return "HASH NOT RECOGNIZED";
|
|
}
|
|
},
|
|
|
|
/*
|
|
* Returns the desired HMAC of the string specified at instantiation
|
|
* using the key and variant param.
|
|
*
|
|
* @param {String} key The key used to calculate the HMAC
|
|
* @param {String} inputFormat The format of key, ASCII or HEX
|
|
* @param {String} variant The desired SHA variant (SHA-1, SHA-224,
|
|
* SHA-256, SHA-384, or SHA-512)
|
|
* @param {String} outputFormat The desired output formatting
|
|
* (B64 or HEX)
|
|
* @return The string representation of the hash in the format specified
|
|
*/
|
|
getHMAC : function (key, inputFormat, variant, outputFormat)
|
|
{
|
|
var formatFunc, keyToUse, blockByteSize, blockBitSize, i,
|
|
retVal, lastArrayIndex, keyBinLen, hashBitSize,
|
|
keyWithIPad = [], keyWithOPad = [];
|
|
|
|
/* Validate the output format selection */
|
|
switch (outputFormat)
|
|
{
|
|
case "HEX":
|
|
formatFunc = binb2hex;
|
|
break;
|
|
case "B64":
|
|
formatFunc = binb2b64;
|
|
break;
|
|
default:
|
|
return "FORMAT NOT RECOGNIZED";
|
|
}
|
|
|
|
/* Validate the hash variant selection and set needed variables */
|
|
switch (variant)
|
|
{
|
|
case "SHA-1":
|
|
blockByteSize = 64;
|
|
hashBitSize = 160;
|
|
break;
|
|
case "SHA-224":
|
|
blockByteSize = 64;
|
|
hashBitSize = 224;
|
|
break;
|
|
case "SHA-256":
|
|
blockByteSize = 64;
|
|
hashBitSize = 256;
|
|
break;
|
|
case "SHA-384":
|
|
blockByteSize = 128;
|
|
hashBitSize = 384;
|
|
break;
|
|
case "SHA-512":
|
|
blockByteSize = 128;
|
|
hashBitSize = 512;
|
|
break;
|
|
default:
|
|
return "HASH NOT RECOGNIZED";
|
|
}
|
|
|
|
/* Validate input format selection */
|
|
if ("HEX" === inputFormat)
|
|
{
|
|
/* Nibbles must come in pairs */
|
|
if (0 !== (key.length % 2))
|
|
{
|
|
return "KEY MUST BE IN BYTE INCREMENTS";
|
|
}
|
|
keyToUse = hex2binb(key);
|
|
keyBinLen = key.length * 4;
|
|
}
|
|
else if ("ASCII" === inputFormat)
|
|
{
|
|
keyToUse = str2binb(key);
|
|
keyBinLen = key.length * charSize;
|
|
}
|
|
else
|
|
{
|
|
return "UNKNOWN KEY INPUT TYPE";
|
|
}
|
|
|
|
/* These are used multiple times, calculate and store them */
|
|
blockBitSize = blockByteSize * 8;
|
|
lastArrayIndex = (blockByteSize / 4) - 1;
|
|
|
|
/* Figure out what to do with the key based on its size relative to
|
|
* the hash's block size */
|
|
if (blockByteSize < (keyBinLen / 8))
|
|
{
|
|
if ("SHA-1" === variant)
|
|
{
|
|
keyToUse = coreSHA1(keyToUse, keyBinLen);
|
|
}
|
|
else
|
|
{
|
|
keyToUse = coreSHA2(keyToUse, keyBinLen, variant);
|
|
}
|
|
/* For all variants, the block size is bigger than the output
|
|
* size so there will never be a useful byte at the end of the
|
|
* string */
|
|
keyToUse[lastArrayIndex] &= 0xFFFFFF00;
|
|
}
|
|
else if (blockByteSize > (keyBinLen / 8))
|
|
{
|
|
/* If the blockByteSize is greater than the key length, there
|
|
* will always be at LEAST one "useless" byte at the end of the
|
|
* string */
|
|
keyToUse[lastArrayIndex] &= 0xFFFFFF00;
|
|
}
|
|
|
|
/* Create ipad and opad */
|
|
for (i = 0; i <= lastArrayIndex; i += 1)
|
|
{
|
|
keyWithIPad[i] = keyToUse[i] ^ 0x36363636;
|
|
keyWithOPad[i] = keyToUse[i] ^ 0x5C5C5C5C;
|
|
}
|
|
|
|
/* Calculate the HMAC */
|
|
if ("SHA-1" === variant)
|
|
{
|
|
retVal = coreSHA1(
|
|
keyWithIPad.concat(this.strToHash),
|
|
blockBitSize + this.strBinLen);
|
|
retVal = coreSHA1(
|
|
keyWithOPad.concat(retVal),
|
|
blockBitSize + hashBitSize);
|
|
}
|
|
else
|
|
{
|
|
retVal = coreSHA2(
|
|
keyWithIPad.concat(this.strToHash),
|
|
blockBitSize + this.strBinLen, variant);
|
|
retVal = coreSHA2(
|
|
keyWithOPad.concat(retVal),
|
|
blockBitSize + hashBitSize, variant);
|
|
}
|
|
|
|
return (formatFunc(retVal));
|
|
}
|
|
};
|
|
|
|
window.jsSHA = jsSHA;
|
|
}());
|