lib/generators: add manual documentation

Restructures the functions reference a bit.
This commit is contained in:
Profpatsch 2016-11-17 22:29:32 +01:00
parent 26eb10e771
commit 53fc7b8272
2 changed files with 428 additions and 380 deletions

View file

@ -8,252 +8,295 @@
The nixpkgs repository has several utility functions to manipulate Nix expressions.
</para>
<section xml:id="sec-pkgs-overridePackages">
<title>pkgs.overridePackages</title>
<section xml:id="sec-overrides">
<title>Overriding</title>
<para>
This function inside the nixpkgs expression (<varname>pkgs</varname>)
can be used to override the set of packages itself.
</para>
<para>
Warning: this function is expensive and must not be used from within
the nixpkgs repository.
</para>
<para>
Example usage:
<programlisting>let
pkgs = import &lt;nixpkgs&gt; {};
newpkgs = pkgs.overridePackages (self: super: {
foo = super.foo.override { ... };
};
in ...</programlisting>
Sometimes one wants to override parts of
<literal>nixpkgs</literal>, e.g. derivation attributes, the results of
derivations or even the whole package set.
</para>
<para>
The resulting <varname>newpkgs</varname> will have the new <varname>foo</varname>
expression, and all other expressions depending on <varname>foo</varname> will also
use the new <varname>foo</varname> expression.
</para>
<section xml:id="sec-pkgs-overridePackages">
<title>pkgs.overridePackages</title>
<para>
The behavior of this function is similar to <link
linkend="sec-modify-via-packageOverrides">config.packageOverrides</link>.
</para>
<para>
The <varname>self</varname> parameter refers to the final package set with the
applied overrides. Using this parameter may lead to infinite recursion if not
used consciously.
</para>
<para>
The <varname>super</varname> parameter refers to the old package set.
It's equivalent to <varname>pkgs</varname> in the above example.
</para>
<para>
Note that in previous versions of nixpkgs, this method replaced any changes from <link
linkend="sec-modify-via-packageOverrides">config.packageOverrides</link>,
along with that from previous calls if this function was called repeatedly.
Now those previous changes will be preserved so this function can be "chained" meaningfully.
To recover the old behavior, make sure <varname>config.packageOverrides</varname> is unset,
and call this only once off a "freshly" imported nixpkgs:
<programlisting>let
pkgs = import &lt;nixpkgs&gt; { config: {}; };
newpkgs = pkgs.overridePackages ...;
in ...</programlisting>
</para>
</section>
<section xml:id="sec-pkg-override">
<title>&lt;pkg&gt;.override</title>
<para>
The function <varname>override</varname> is usually available for all the
derivations in the nixpkgs expression (<varname>pkgs</varname>).
</para>
<para>
It is used to override the arguments passed to a function.
</para>
<para>
Example usages:
<programlisting>pkgs.foo.override { arg1 = val1; arg2 = val2; ... }</programlisting>
<programlisting>pkgs.overridePackages (self: super: {
foo = super.foo.override { barSupport = true ; };
})</programlisting>
<programlisting>mypkg = pkgs.callPackage ./mypkg.nix {
mydep = pkgs.mydep.override { ... };
})</programlisting>
</para>
<para>
In the first example, <varname>pkgs.foo</varname> is the result of a function call
with some default arguments, usually a derivation.
Using <varname>pkgs.foo.override</varname> will call the same function with
the given new arguments.
</para>
</section>
<section xml:id="sec-pkg-overrideAttrs">
<title>&lt;pkg&gt;.overrideAttrs</title>
<para>
The function <varname>overrideAttrs</varname> allows overriding the
attribute set passed to a <varname>stdenv.mkDerivation</varname> call,
producing a new derivation based on the original one.
This function is available on all derivations produced by the
<varname>stdenv.mkDerivation</varname> function, which is most packages
in the nixpkgs expression <varname>pkgs</varname>.
</para>
<para>
Example usage:
<programlisting>helloWithDebug = pkgs.hello.overrideAttrs (oldAttrs: rec {
separateDebugInfo = true;
});</programlisting>
</para>
<para>
In the above example, the <varname>separateDebugInfo</varname> attribute is
overriden to be true, thus building debug info for
<varname>helloWithDebug</varname>, while all other attributes will be
retained from the original <varname>hello</varname> package.
</para>
<para>
The argument <varname>oldAttrs</varname> is conventionally used to refer to
the attr set originally passed to <varname>stdenv.mkDerivation</varname>.
</para>
<note>
<para>
Note that <varname>separateDebugInfo</varname> is processed only by the
<varname>stdenv.mkDerivation</varname> function, not the generated, raw
Nix derivation. Thus, using <varname>overrideDerivation</varname> will
not work in this case, as it overrides only the attributes of the final
derivation. It is for this reason that <varname>overrideAttrs</varname>
should be preferred in (almost) all cases to
<varname>overrideDerivation</varname>, i.e. to allow using
<varname>sdenv.mkDerivation</varname> to process input arguments, as well
as the fact that it is easier to use (you can use the same attribute
names you see in your Nix code, instead of the ones generated (e.g.
<varname>buildInputs</varname> vs <varname>nativeBuildInputs</varname>,
and involves less typing.
This function inside the nixpkgs expression (<varname>pkgs</varname>)
can be used to override the set of packages itself.
</para>
</note>
</section>
<section xml:id="sec-pkg-overrideDerivation">
<title>&lt;pkg&gt;.overrideDerivation</title>
<warning>
<para>You should prefer <varname>overrideAttrs</varname> in almost all
cases, see its documentation for the reasons why.
<varname>overrideDerivation</varname> is not deprecated and will continue
to work, but is less nice to use and does not have as many abilities as
<varname>overrideAttrs</varname>.
</para>
</warning>
<warning>
<para>Do not use this function in Nixpkgs as it evaluates a Derivation
before modifying it, which breaks package abstraction and removes
error-checking of function arguments. In addition, this
evaluation-per-function application incurs a performance penalty,
which can become a problem if many overrides are used.
It is only intended for ad-hoc customisation, such as in
<filename>~/.nixpkgs/config.nix</filename>.
</para>
</warning>
<para>
The function <varname>overrideDerivation</varname> creates a new derivation
based on an existing one by overriding the original's attributes with
the attribute set produced by the specified function.
This function is available on all
derivations defined using the <varname>makeOverridable</varname> function.
Most standard derivation-producing functions, such as
<varname>stdenv.mkDerivation</varname>, are defined using this
function, which means most packages in the nixpkgs expression,
<varname>pkgs</varname>, have this function.
</para>
<para>
Example usage:
<programlisting>mySed = pkgs.gnused.overrideDerivation (oldAttrs: {
name = "sed-4.2.2-pre";
src = fetchurl {
url = ftp://alpha.gnu.org/gnu/sed/sed-4.2.2-pre.tar.bz2;
sha256 = "11nq06d131y4wmf3drm0yk502d2xc6n5qy82cg88rb9nqd2lj41k";
};
patches = [];
});</programlisting>
</para>
<para>
In the above example, the <varname>name</varname>, <varname>src</varname>,
and <varname>patches</varname> of the derivation will be overridden, while
all other attributes will be retained from the original derivation.
</para>
<para>
The argument <varname>oldAttrs</varname> is used to refer to the attribute set of
the original derivation.
</para>
<note>
<para>
A package's attributes are evaluated *before* being modified by
the <varname>overrideDerivation</varname> function.
For example, the <varname>name</varname> attribute reference
in <varname>url = "mirror://gnu/hello/${name}.tar.gz";</varname>
is filled-in *before* the <varname>overrideDerivation</varname> function
modifies the attribute set. This means that overriding the
<varname>name</varname> attribute, in this example, *will not* change the
value of the <varname>url</varname> attribute. Instead, we need to override
both the <varname>name</varname> *and* <varname>url</varname> attributes.
Warning: this function is expensive and must not be used from within
the nixpkgs repository.
</para>
</note>
<para>
Example usage:
<programlisting>let
pkgs = import &lt;nixpkgs&gt; {};
newpkgs = pkgs.overridePackages (self: super: {
foo = super.foo.override { ... };
};
in ...</programlisting>
</para>
<para>
The resulting <varname>newpkgs</varname> will have the new <varname>foo</varname>
expression, and all other expressions depending on <varname>foo</varname> will also
use the new <varname>foo</varname> expression.
</para>
<para>
The behavior of this function is similar to <link
linkend="sec-modify-via-packageOverrides">config.packageOverrides</link>.
</para>
<para>
The <varname>self</varname> parameter refers to the final package set with the
applied overrides. Using this parameter may lead to infinite recursion if not
used consciously.
</para>
<para>
The <varname>super</varname> parameter refers to the old package set.
It's equivalent to <varname>pkgs</varname> in the above example.
</para>
<para>
Note that in previous versions of nixpkgs, this method replaced any changes from <link
linkend="sec-modify-via-packageOverrides">config.packageOverrides</link>,
along with that from previous calls if this function was called repeatedly.
Now those previous changes will be preserved so this function can be "chained" meaningfully.
To recover the old behavior, make sure <varname>config.packageOverrides</varname> is unset,
and call this only once off a "freshly" imported nixpkgs:
<programlisting>let
pkgs = import &lt;nixpkgs&gt; { config: {}; };
newpkgs = pkgs.overridePackages ...;
in ...</programlisting>
</para>
</section>
<section xml:id="sec-pkg-override">
<title>&lt;pkg&gt;.override</title>
<para>
The function <varname>override</varname> is usually available for all the
derivations in the nixpkgs expression (<varname>pkgs</varname>).
</para>
<para>
It is used to override the arguments passed to a function.
</para>
<para>
Example usages:
<programlisting>pkgs.foo.override { arg1 = val1; arg2 = val2; ... }</programlisting>
<programlisting>pkgs.overridePackages (self: super: {
foo = super.foo.override { barSupport = true ; };
})</programlisting>
<programlisting>mypkg = pkgs.callPackage ./mypkg.nix {
mydep = pkgs.mydep.override { ... };
})</programlisting>
</para>
<para>
In the first example, <varname>pkgs.foo</varname> is the result of a function call
with some default arguments, usually a derivation.
Using <varname>pkgs.foo.override</varname> will call the same function with
the given new arguments.
</para>
</section>
<section xml:id="sec-pkg-overrideAttrs">
<title>&lt;pkg&gt;.overrideAttrs</title>
<para>
The function <varname>overrideAttrs</varname> allows overriding the
attribute set passed to a <varname>stdenv.mkDerivation</varname> call,
producing a new derivation based on the original one.
This function is available on all derivations produced by the
<varname>stdenv.mkDerivation</varname> function, which is most packages
in the nixpkgs expression <varname>pkgs</varname>.
</para>
<para>
Example usage:
<programlisting>helloWithDebug = pkgs.hello.overrideAttrs (oldAttrs: rec {
separateDebugInfo = true;
});</programlisting>
</para>
<para>
In the above example, the <varname>separateDebugInfo</varname> attribute is
overriden to be true, thus building debug info for
<varname>helloWithDebug</varname>, while all other attributes will be
retained from the original <varname>hello</varname> package.
</para>
<para>
The argument <varname>oldAttrs</varname> is conventionally used to refer to
the attr set originally passed to <varname>stdenv.mkDerivation</varname>.
</para>
<note>
<para>
Note that <varname>separateDebugInfo</varname> is processed only by the
<varname>stdenv.mkDerivation</varname> function, not the generated, raw
Nix derivation. Thus, using <varname>overrideDerivation</varname> will
not work in this case, as it overrides only the attributes of the final
derivation. It is for this reason that <varname>overrideAttrs</varname>
should be preferred in (almost) all cases to
<varname>overrideDerivation</varname>, i.e. to allow using
<varname>sdenv.mkDerivation</varname> to process input arguments, as well
as the fact that it is easier to use (you can use the same attribute
names you see in your Nix code, instead of the ones generated (e.g.
<varname>buildInputs</varname> vs <varname>nativeBuildInputs</varname>,
and involves less typing.
</para>
</note>
</section>
<section xml:id="sec-pkg-overrideDerivation">
<title>&lt;pkg&gt;.overrideDerivation</title>
<warning>
<para>You should prefer <varname>overrideAttrs</varname> in almost all
cases, see its documentation for the reasons why.
<varname>overrideDerivation</varname> is not deprecated and will continue
to work, but is less nice to use and does not have as many abilities as
<varname>overrideAttrs</varname>.
</para>
</warning>
<warning>
<para>Do not use this function in Nixpkgs as it evaluates a Derivation
before modifying it, which breaks package abstraction and removes
error-checking of function arguments. In addition, this
evaluation-per-function application incurs a performance penalty,
which can become a problem if many overrides are used.
It is only intended for ad-hoc customisation, such as in
<filename>~/.nixpkgs/config.nix</filename>.
</para>
</warning>
<para>
The function <varname>overrideDerivation</varname> creates a new derivation
based on an existing one by overriding the original's attributes with
the attribute set produced by the specified function.
This function is available on all
derivations defined using the <varname>makeOverridable</varname> function.
Most standard derivation-producing functions, such as
<varname>stdenv.mkDerivation</varname>, are defined using this
function, which means most packages in the nixpkgs expression,
<varname>pkgs</varname>, have this function.
</para>
<para>
Example usage:
<programlisting>mySed = pkgs.gnused.overrideDerivation (oldAttrs: {
name = "sed-4.2.2-pre";
src = fetchurl {
url = ftp://alpha.gnu.org/gnu/sed/sed-4.2.2-pre.tar.bz2;
sha256 = "11nq06d131y4wmf3drm0yk502d2xc6n5qy82cg88rb9nqd2lj41k";
};
patches = [];
});</programlisting>
</para>
<para>
In the above example, the <varname>name</varname>, <varname>src</varname>,
and <varname>patches</varname> of the derivation will be overridden, while
all other attributes will be retained from the original derivation.
</para>
<para>
The argument <varname>oldAttrs</varname> is used to refer to the attribute set of
the original derivation.
</para>
<note>
<para>
A package's attributes are evaluated *before* being modified by
the <varname>overrideDerivation</varname> function.
For example, the <varname>name</varname> attribute reference
in <varname>url = "mirror://gnu/hello/${name}.tar.gz";</varname>
is filled-in *before* the <varname>overrideDerivation</varname> function
modifies the attribute set. This means that overriding the
<varname>name</varname> attribute, in this example, *will not* change the
value of the <varname>url</varname> attribute. Instead, we need to override
both the <varname>name</varname> *and* <varname>url</varname> attributes.
</para>
</note>
</section>
<section xml:id="sec-lib-makeOverridable">
<title>lib.makeOverridable</title>
<para>
The function <varname>lib.makeOverridable</varname> is used to make the result
of a function easily customizable. This utility only makes sense for functions
that accept an argument set and return an attribute set.
</para>
<para>
Example usage:
<programlisting>f = { a, b }: { result = a+b; }
c = lib.makeOverridable f { a = 1; b = 2; }</programlisting>
</para>
<para>
The variable <varname>c</varname> is the value of the <varname>f</varname> function
applied with some default arguments. Hence the value of <varname>c.result</varname>
is <literal>3</literal>, in this example.
</para>
<para>
The variable <varname>c</varname> however also has some additional functions, like
<link linkend="sec-pkg-override">c.override</link> which can be used to
override the default arguments. In this example the value of
<varname>(c.override { a = 4; }).result</varname> is 6.
</para>
</section>
</section>
<section xml:id="sec-lib-makeOverridable">
<title>lib.makeOverridable</title>
<section xml:id="sec-generators">
<title>Generators</title>
<para>
The function <varname>lib.makeOverridable</varname> is used to make the result
of a function easily customizable. This utility only makes sense for functions
that accept an argument set and return an attribute set.
Generators are functions that create file formats from nix
data structures, e.g. for configuration files.
There are generators available for: <literal>INI</literal>,
<literal>JSON</literal> and <literal>YAML</literal>
</para>
<para>
Example usage:
<programlisting>f = { a, b }: { result = a+b; }
c = lib.makeOverridable f { a = 1; b = 2; }</programlisting>
All generators follow a similar call interface: <code>generatorName
configFunctions data</code>, where <literal>configFunctions</literal> is a
set of user-defined functions that format variable parts of the content.
They each have common defaults, so often they do not need to be set
manually. An example is <code>mkSectionName ? (name: libStr.escape [ "[" "]"
] name)</code> from the <literal>INI</literal> generator. It gets the name
of a section and returns a sanitized name. The default
<literal>mkSectionName</literal> escapes <literal>[</literal> and
<literal>]</literal> with a backslash.
</para>
<para>
The variable <varname>c</varname> is the value of the <varname>f</varname> function
applied with some default arguments. Hence the value of <varname>c.result</varname>
is <literal>3</literal>, in this example.
</para>
<note><para>Nix store paths can be converted to strings by enclosing a
derivation attribute like so: <code>"${drv}"</code>.</para></note>
<para>
The variable <varname>c</varname> however also has some additional functions, like
<link linkend="sec-pkg-override">c.override</link> which can be used to
override the default arguments. In this example the value of
<varname>(c.override { a = 4; }).result</varname> is 6.
Detailed documentation for each generator can be found in
<literal>lib/generators.nix</literal>.
</para>
</section>
@ -370,37 +413,37 @@ c = lib.makeOverridable f { a = 1; b = 2; }</programlisting>
</section>
<section xml:id="sec-pkgs-dockerTools">
<title>pkgs.dockerTools</title>
<title>pkgs.dockerTools</title>
<para>
<para>
<varname>pkgs.dockerTools</varname> is a set of functions for creating and
manipulating Docker images according to the
<link xlink:href="https://github.com/docker/docker/blob/master/image/spec/v1.md#docker-image-specification-v100">
Docker Image Specification v1.0.0
Docker Image Specification v1.0.0
</link>. Docker itself is not used to perform any of the operations done by these
functions.
</para>
</para>
<warning>
<warning>
<para>
The <varname>dockerTools</varname> API is unstable and may be subject to
backwards-incompatible changes in the future.
The <varname>dockerTools</varname> API is unstable and may be subject to
backwards-incompatible changes in the future.
</para>
</warning>
</warning>
<section xml:id="ssec-pkgs-dockerTools-buildImage">
<section xml:id="ssec-pkgs-dockerTools-buildImage">
<title>buildImage</title>
<para>
This function is analogous to the <command>docker build</command> command,
in that can used to build a Docker-compatible repository tarball containing
a single image with one or multiple layers. As such, the result
is suitable for being loaded in Docker with <command>docker load</command>.
This function is analogous to the <command>docker build</command> command,
in that can used to build a Docker-compatible repository tarball containing
a single image with one or multiple layers. As such, the result
is suitable for being loaded in Docker with <command>docker load</command>.
</para>
<para>
The parameters of <varname>buildImage</varname> with relative example values are
described below:
The parameters of <varname>buildImage</varname> with relative example values are
described below:
</para>
<example xml:id='ex-dockerTools-buildImage'><title>Docker build</title>
@ -408,11 +451,11 @@ c = lib.makeOverridable f { a = 1; b = 2; }</programlisting>
buildImage {
name = "redis"; <co xml:id='ex-dockerTools-buildImage-1' />
tag = "latest"; <co xml:id='ex-dockerTools-buildImage-2' />
fromImage = someBaseImage; <co xml:id='ex-dockerTools-buildImage-3' />
fromImageName = null; <co xml:id='ex-dockerTools-buildImage-4' />
fromImageTag = "latest"; <co xml:id='ex-dockerTools-buildImage-5' />
contents = pkgs.redis; <co xml:id='ex-dockerTools-buildImage-6' />
runAsRoot = '' <co xml:id='ex-dockerTools-buildImage-runAsRoot' />
#!${stdenv.shell}
@ -431,131 +474,131 @@ c = lib.makeOverridable f { a = 1; b = 2; }</programlisting>
</example>
<para>The above example will build a Docker image <literal>redis/latest</literal>
from the given base image. Loading and running this image in Docker results in
<literal>redis-server</literal> being started automatically.
from the given base image. Loading and running this image in Docker results in
<literal>redis-server</literal> being started automatically.
</para>
<calloutlist>
<callout arearefs='ex-dockerTools-buildImage-1'>
<callout arearefs='ex-dockerTools-buildImage-1'>
<para>
<varname>name</varname> specifies the name of the resulting image.
This is the only required argument for <varname>buildImage</varname>.
<varname>name</varname> specifies the name of the resulting image.
This is the only required argument for <varname>buildImage</varname>.
</para>
</callout>
</callout>
<callout arearefs='ex-dockerTools-buildImage-2'>
<callout arearefs='ex-dockerTools-buildImage-2'>
<para>
<varname>tag</varname> specifies the tag of the resulting image.
By default it's <literal>latest</literal>.
<varname>tag</varname> specifies the tag of the resulting image.
By default it's <literal>latest</literal>.
</para>
</callout>
</callout>
<callout arearefs='ex-dockerTools-buildImage-3'>
<callout arearefs='ex-dockerTools-buildImage-3'>
<para>
<varname>fromImage</varname> is the repository tarball containing the base image.
It must be a valid Docker image, such as exported by <command>docker save</command>.
By default it's <literal>null</literal>, which can be seen as equivalent
to <literal>FROM scratch</literal> of a <filename>Dockerfile</filename>.
<varname>fromImage</varname> is the repository tarball containing the base image.
It must be a valid Docker image, such as exported by <command>docker save</command>.
By default it's <literal>null</literal>, which can be seen as equivalent
to <literal>FROM scratch</literal> of a <filename>Dockerfile</filename>.
</para>
</callout>
<callout arearefs='ex-dockerTools-buildImage-4'>
<para>
<varname>fromImageName</varname> can be used to further specify
the base image within the repository, in case it contains multiple images.
By default it's <literal>null</literal>, in which case
<varname>buildImage</varname> will peek the first image available
in the repository.
</para>
</callout>
</callout>
<callout arearefs='ex-dockerTools-buildImage-5'>
<callout arearefs='ex-dockerTools-buildImage-4'>
<para>
<varname>fromImageTag</varname> can be used to further specify the tag
of the base image within the repository, in case an image contains multiple tags.
By default it's <literal>null</literal>, in which case
<varname>buildImage</varname> will peek the first tag available for the base image.
<varname>fromImageName</varname> can be used to further specify
the base image within the repository, in case it contains multiple images.
By default it's <literal>null</literal>, in which case
<varname>buildImage</varname> will peek the first image available
in the repository.
</para>
</callout>
</callout>
<callout arearefs='ex-dockerTools-buildImage-6'>
<callout arearefs='ex-dockerTools-buildImage-5'>
<para>
<varname>contents</varname> is a derivation that will be copied in the new
layer of the resulting image. This can be similarly seen as
<command>ADD contents/ /</command> in a <filename>Dockerfile</filename>.
By default it's <literal>null</literal>.
<varname>fromImageTag</varname> can be used to further specify the tag
of the base image within the repository, in case an image contains multiple tags.
By default it's <literal>null</literal>, in which case
<varname>buildImage</varname> will peek the first tag available for the base image.
</para>
</callout>
</callout>
<callout arearefs='ex-dockerTools-buildImage-runAsRoot'>
<callout arearefs='ex-dockerTools-buildImage-6'>
<para>
<varname>runAsRoot</varname> is a bash script that will run as root
in an environment that overlays the existing layers of the base image with
the new resulting layer, including the previously copied
<varname>contents</varname> derivation.
This can be similarly seen as
<command>RUN ...</command> in a <filename>Dockerfile</filename>.
<note>
<varname>contents</varname> is a derivation that will be copied in the new
layer of the resulting image. This can be similarly seen as
<command>ADD contents/ /</command> in a <filename>Dockerfile</filename>.
By default it's <literal>null</literal>.
</para>
</callout>
<callout arearefs='ex-dockerTools-buildImage-runAsRoot'>
<para>
<varname>runAsRoot</varname> is a bash script that will run as root
in an environment that overlays the existing layers of the base image with
the new resulting layer, including the previously copied
<varname>contents</varname> derivation.
This can be similarly seen as
<command>RUN ...</command> in a <filename>Dockerfile</filename>.
<note>
<para>
Using this parameter requires the <literal>kvm</literal>
device to be available.
Using this parameter requires the <literal>kvm</literal>
device to be available.
</para>
</note>
</note>
</para>
</callout>
</callout>
<callout arearefs='ex-dockerTools-buildImage-8'>
<callout arearefs='ex-dockerTools-buildImage-8'>
<para>
<varname>config</varname> is used to specify the configuration of the
containers that will be started off the built image in Docker.
The available options are listed in the
<link xlink:href="https://github.com/docker/docker/blob/master/image/spec/v1.md#container-runconfig-field-descriptions">
<varname>config</varname> is used to specify the configuration of the
containers that will be started off the built image in Docker.
The available options are listed in the
<link xlink:href="https://github.com/docker/docker/blob/master/image/spec/v1.md#container-runconfig-field-descriptions">
Docker Image Specification v1.0.0
</link>.
</link>.
</para>
</callout>
</callout>
</calloutlist>
<para>
After the new layer has been created, its closure
(to which <varname>contents</varname>, <varname>config</varname> and
<varname>runAsRoot</varname> contribute) will be copied in the layer itself.
Only new dependencies that are not already in the existing layers will be copied.
After the new layer has been created, its closure
(to which <varname>contents</varname>, <varname>config</varname> and
<varname>runAsRoot</varname> contribute) will be copied in the layer itself.
Only new dependencies that are not already in the existing layers will be copied.
</para>
<para>
At the end of the process, only one new single layer will be produced and
added to the resulting image.
At the end of the process, only one new single layer will be produced and
added to the resulting image.
</para>
<para>
The resulting repository will only list the single image
<varname>image/tag</varname>. In the case of <xref linkend='ex-dockerTools-buildImage'/>
it would be <varname>redis/latest</varname>.
The resulting repository will only list the single image
<varname>image/tag</varname>. In the case of <xref linkend='ex-dockerTools-buildImage'/>
it would be <varname>redis/latest</varname>.
</para>
<para>
It is possible to inspect the arguments with which an image was built
using its <varname>buildArgs</varname> attribute.
It is possible to inspect the arguments with which an image was built
using its <varname>buildArgs</varname> attribute.
</para>
</section>
</section>
<section xml:id="ssec-pkgs-dockerTools-fetchFromRegistry">
<section xml:id="ssec-pkgs-dockerTools-fetchFromRegistry">
<title>pullImage</title>
<para>
This function is analogous to the <command>docker pull</command> command,
in that can be used to fetch a Docker image from a Docker registry.
Currently only registry <literal>v1</literal> is supported.
By default <link xlink:href="https://hub.docker.com/">Docker Hub</link>
is used to pull images.
This function is analogous to the <command>docker pull</command> command,
in that can be used to fetch a Docker image from a Docker registry.
Currently only registry <literal>v1</literal> is supported.
By default <link xlink:href="https://hub.docker.com/">Docker Hub</link>
is used to pull images.
</para>
<para>
Its parameters are described in the example below:
Its parameters are described in the example below:
</para>
<example xml:id='ex-dockerTools-pullImage'><title>Docker pull</title>
@ -573,73 +616,73 @@ c = lib.makeOverridable f { a = 1; b = 2; }</programlisting>
</example>
<calloutlist>
<callout arearefs='ex-dockerTools-pullImage-1'>
<callout arearefs='ex-dockerTools-pullImage-1'>
<para>
<varname>imageName</varname> specifies the name of the image to be downloaded,
which can also include the registry namespace (e.g. <literal>library/debian</literal>).
This argument is required.
<varname>imageName</varname> specifies the name of the image to be downloaded,
which can also include the registry namespace (e.g. <literal>library/debian</literal>).
This argument is required.
</para>
</callout>
<callout arearefs='ex-dockerTools-pullImage-2'>
<para>
<varname>imageTag</varname> specifies the tag of the image to be downloaded.
By default it's <literal>latest</literal>.
</para>
</callout>
</callout>
<callout arearefs='ex-dockerTools-pullImage-3'>
<callout arearefs='ex-dockerTools-pullImage-2'>
<para>
<varname>imageId</varname>, if specified this exact image will be fetched, instead
of <varname>imageName/imageTag</varname>. However, the resulting repository
will still be named <varname>imageName/imageTag</varname>.
By default it's <literal>null</literal>.
<varname>imageTag</varname> specifies the tag of the image to be downloaded.
By default it's <literal>latest</literal>.
</para>
</callout>
</callout>
<callout arearefs='ex-dockerTools-pullImage-4'>
<callout arearefs='ex-dockerTools-pullImage-3'>
<para>
<varname>sha256</varname> is the checksum of the whole fetched image.
This argument is required.
<varname>imageId</varname>, if specified this exact image will be fetched, instead
of <varname>imageName/imageTag</varname>. However, the resulting repository
will still be named <varname>imageName/imageTag</varname>.
By default it's <literal>null</literal>.
</para>
</callout>
<callout arearefs='ex-dockerTools-pullImage-4'>
<para>
<varname>sha256</varname> is the checksum of the whole fetched image.
This argument is required.
</para>
<note>
<para>The checksum is computed on the unpacked directory, not on the final tarball.</para>
<para>The checksum is computed on the unpacked directory, not on the final tarball.</para>
</note>
</callout>
</callout>
<callout arearefs='ex-dockerTools-pullImage-5'>
<callout arearefs='ex-dockerTools-pullImage-5'>
<para>
In the above example the default values are shown for the variables
<varname>indexUrl</varname> and <varname>registryVersion</varname>.
Hence by default the Docker.io registry is used to pull the images.
In the above example the default values are shown for the variables
<varname>indexUrl</varname> and <varname>registryVersion</varname>.
Hence by default the Docker.io registry is used to pull the images.
</para>
</callout>
</callout>
</calloutlist>
</section>
<section xml:id="ssec-pkgs-dockerTools-exportImage">
</section>
<section xml:id="ssec-pkgs-dockerTools-exportImage">
<title>exportImage</title>
<para>
This function is analogous to the <command>docker export</command> command,
in that can used to flatten a Docker image that contains multiple layers.
It is in fact the result of the merge of all the layers of the image.
As such, the result is suitable for being imported in Docker
with <command>docker import</command>.
This function is analogous to the <command>docker export</command> command,
in that can used to flatten a Docker image that contains multiple layers.
It is in fact the result of the merge of all the layers of the image.
As such, the result is suitable for being imported in Docker
with <command>docker import</command>.
</para>
<note>
<para>
<para>
Using this function requires the <literal>kvm</literal>
device to be available.
</para>
</para>
</note>
<para>
The parameters of <varname>exportImage</varname> are the following:
The parameters of <varname>exportImage</varname> are the following:
</para>
<example xml:id='ex-dockerTools-exportImage'><title>Docker export</title>
@ -648,35 +691,35 @@ c = lib.makeOverridable f { a = 1; b = 2; }</programlisting>
fromImage = someLayeredImage;
fromImageName = null;
fromImageTag = null;
name = someLayeredImage.name;
}
</programlisting>
</example>
<para>
The parameters relative to the base image have the same synopsis as
described in <xref linkend='ssec-pkgs-dockerTools-buildImage'/>, except that
<varname>fromImage</varname> is the only required argument in this case.
The parameters relative to the base image have the same synopsis as
described in <xref linkend='ssec-pkgs-dockerTools-buildImage'/>, except that
<varname>fromImage</varname> is the only required argument in this case.
</para>
<para>
The <varname>name</varname> argument is the name of the derivation output,
which defaults to <varname>fromImage.name</varname>.
The <varname>name</varname> argument is the name of the derivation output,
which defaults to <varname>fromImage.name</varname>.
</para>
</section>
</section>
<section xml:id="ssec-pkgs-dockerTools-shadowSetup">
<section xml:id="ssec-pkgs-dockerTools-shadowSetup">
<title>shadowSetup</title>
<para>
This constant string is a helper for setting up the base files for managing
users and groups, only if such files don't exist already.
It is suitable for being used in a
<varname>runAsRoot</varname> <xref linkend='ex-dockerTools-buildImage-runAsRoot'/> script for cases like
in the example below:
This constant string is a helper for setting up the base files for managing
users and groups, only if such files don't exist already.
It is suitable for being used in a
<varname>runAsRoot</varname> <xref linkend='ex-dockerTools-buildImage-runAsRoot'/> script for cases like
in the example below:
</para>
<example xml:id='ex-dockerTools-shadowSetup'><title>Shadow base files</title>
<programlisting>
buildImage {
@ -695,13 +738,13 @@ c = lib.makeOverridable f { a = 1; b = 2; }</programlisting>
</example>
<para>
Creating base files like <literal>/etc/passwd</literal> or
<literal>/etc/login.defs</literal> are necessary for shadow-utils to
manipulate users and groups.
Creating base files like <literal>/etc/passwd</literal> or
<literal>/etc/login.defs</literal> are necessary for shadow-utils to
manipulate users and groups.
</para>
</section>
</section>
</section>
</chapter>

View file

@ -1,6 +1,11 @@
/* Functions that generate widespread config file
/* Functions that generate widespread file
* formats from nix data structures.
*
* They all follow a similar interface:
* generator { config-attrs } data
*
* Tests can be found in ./tests.nix
* Documentation in the manual, #sec-generators
*/
with import ./trivial.nix;
let