Functions reference The nixpkgs repository has several utility functions to manipulate Nix expressions.
buildFHSUserEnv buildFHSUserEnv provides a way to build and run FHS-compatible lightweight sandboxes. It creates an isolated root with bound /nix/store, so its footprint in terms of disk space needed is quite small. This allows one to run software which is hard or unfeasible to patch for NixOS -- 3rd-party source trees with FHS assumptions, games distributed as tarballs, software with integrity checking and/or external self-updated binaries. It uses Linux namespaces feature to create temporary lightweight environments which are destroyed after all child processes exit, without root user rights requirement. Accepted arguments are: name Environment name. targetPkgs Packages to be installed for the main host's architecture (i.e. x86_64 on x86_64 installations). Along with libraries binaries are also installed. multiPkgs Packages to be installed for all architectures supported by a host (i.e. i686 and x86_64 on x86_64 installations). Only libraries are installed by default. extraBuildCommands Additional commands to be executed for finalizing the directory structure. extraBuildCommandsMulti Like extraBuildCommands, but executed only on multilib architectures. extraOutputsToInstall Additional derivation outputs to be linked for both target and multi-architecture packages. extraInstallCommands Additional commands to be executed for finalizing the derivation with runner script. runScript A command that would be executed inside the sandbox and passed all the command line arguments. It defaults to bash. One can create a simple environment using a shell.nix like that: {} }: (pkgs.buildFHSUserEnv { name = "simple-x11-env"; targetPkgs = pkgs: (with pkgs; [ udev alsaLib ]) ++ (with pkgs.xorg; [ libX11 libXcursor libXrandr ]); multiPkgs = pkgs: (with pkgs; [ udev alsaLib ]); runScript = "bash"; }).env ]]> Running nix-shell would then drop you into a shell with these libraries and binaries available. You can use this to run closed-source applications which expect FHS structure without hassles: simply change runScript to the application path, e.g. ./bin/start.sh -- relative paths are supported.
pkgs.dockerTools pkgs.dockerTools is a set of functions for creating and manipulating Docker images according to the Docker Image Specification v1.2.0 . Docker itself is not used to perform any of the operations done by these functions. The dockerTools API is unstable and may be subject to backwards-incompatible changes in the future.
buildImage This function is analogous to the docker build command, in that can used to build a Docker-compatible repository tarball containing a single image with one or multiple layers. As such, the result is suitable for being loaded in Docker with docker load. The parameters of buildImage with relative example values are described below: Docker build buildImage { name = "redis"; tag = "latest"; fromImage = someBaseImage; fromImageName = null; fromImageTag = "latest"; contents = pkgs.redis; runAsRoot = '' #!${stdenv.shell} mkdir -p /data ''; config = { Cmd = [ "/bin/redis-server" ]; WorkingDir = "/data"; Volumes = { "/data" = {}; }; }; } The above example will build a Docker image redis/latest from the given base image. Loading and running this image in Docker results in redis-server being started automatically. name specifies the name of the resulting image. This is the only required argument for buildImage. tag specifies the tag of the resulting image. By default it's null, which indicates that the nix output hash will be used as tag. fromImage is the repository tarball containing the base image. It must be a valid Docker image, such as exported by docker save. By default it's null, which can be seen as equivalent to FROM scratch of a Dockerfile. fromImageName can be used to further specify the base image within the repository, in case it contains multiple images. By default it's null, in which case buildImage will peek the first image available in the repository. fromImageTag can be used to further specify the tag of the base image within the repository, in case an image contains multiple tags. By default it's null, in which case buildImage will peek the first tag available for the base image. contents is a derivation that will be copied in the new layer of the resulting image. This can be similarly seen as ADD contents/ / in a Dockerfile. By default it's null. runAsRoot is a bash script that will run as root in an environment that overlays the existing layers of the base image with the new resulting layer, including the previously copied contents derivation. This can be similarly seen as RUN ... in a Dockerfile. Using this parameter requires the kvm device to be available. config is used to specify the configuration of the containers that will be started off the built image in Docker. The available options are listed in the Docker Image Specification v1.2.0 . After the new layer has been created, its closure (to which contents, config and runAsRoot contribute) will be copied in the layer itself. Only new dependencies that are not already in the existing layers will be copied. At the end of the process, only one new single layer will be produced and added to the resulting image. The resulting repository will only list the single image image/tag. In the case of it would be redis/latest. It is possible to inspect the arguments with which an image was built using its buildArgs attribute. If you see errors similar to getProtocolByName: does not exist (no such protocol name: tcp) you may need to add pkgs.iana-etc to contents. If you see errors similar to Error_Protocol ("certificate has unknown CA",True,UnknownCa) you may need to add pkgs.cacert to contents. Impurely Defining a Docker Layer's Creation Date By default buildImage will use a static date of one second past the UNIX Epoch. This allows buildImage to produce binary reproducible images. When listing images with docker list images, the newly created images will be listed like this: You can break binary reproducibility but have a sorted, meaningful CREATED column by setting created to now. and now the Docker CLI will display a reasonable date and sort the images as expected: however, the produced images will not be binary reproducible.
buildLayeredImage Create a Docker image with many of the store paths being on their own layer to improve sharing between images. name The name of the resulting image. tag optional Tag of the generated image. Default: the output path's hash contents optional Top level paths in the container. Either a single derivation, or a list of derivations. Default: [] config optional Run-time configuration of the container. A full list of the options are available at in the Docker Image Specification v1.2.0 . Default: {} created optional Date and time the layers were created. Follows the same now exception supported by buildImage. Default: 1970-01-01T00:00:01Z maxLayers optional Maximum number of layers to create. Default: 24
Behavior of <varname>contents</varname> in the final image Each path directly listed in contents will have a symlink in the root of the image. For example: will create symlinks for all the paths in the hello package: /nix/store/h1zb1padqbbb7jicsvkmrym3r6snphxg-hello-2.10/bin/hello /share/info/hello.info -> /nix/store/h1zb1padqbbb7jicsvkmrym3r6snphxg-hello-2.10/share/info/hello.info /share/locale/bg/LC_MESSAGES/hello.mo -> /nix/store/h1zb1padqbbb7jicsvkmrym3r6snphxg-hello-2.10/share/locale/bg/LC_MESSAGES/hello.mo ]]>
Automatic inclusion of <varname>config</varname> references The closure of config is automatically included in the closure of the final image. This allows you to make very simple Docker images with very little code. This container will start up and run hello:
Adjusting <varname>maxLayers</varname> Increasing the maxLayers increases the number of layers which have a chance to be shared between different images. Modern Docker installations support up to 128 layers, however older versions support as few as 42. If the produced image will not be extended by other Docker builds, it is safe to set maxLayers to 128. However it will be impossible to extend the image further. The first (maxLayers-2) most "popular" paths will have their own individual layers, then layer #maxLayers-1 will contain all the remaining "unpopular" paths, and finally layer #maxLayers will contain the Image configuration. Docker's Layers are not inherently ordered, they are content-addressable and are not explicitly layered until they are composed in to an Image.
pullImage This function is analogous to the docker pull command, in that can be used to pull a Docker image from a Docker registry. By default Docker Hub is used to pull images. Its parameters are described in the example below: Docker pull pullImage { imageName = "nixos/nix"; imageDigest = "sha256:20d9485b25ecfd89204e843a962c1bd70e9cc6858d65d7f5fadc340246e2116b"; finalImageTag = "1.11"; sha256 = "0mqjy3zq2v6rrhizgb9nvhczl87lcfphq9601wcprdika2jz7qh8"; os = "linux"; arch = "x86_64"; } imageName specifies the name of the image to be downloaded, which can also include the registry namespace (e.g. nixos). This argument is required. imageDigest specifies the digest of the image to be downloaded. Skopeo can be used to get the digest of an image, with its inspect subcommand. Since a given imageName may transparently refer to a manifest list of images which support multiple architectures and/or operating systems, supply the `--override-os` and `--override-arch` arguments to specify exactly which image you want. By default it will match the OS and architecture of the host the command is run on. $ nix-shell --packages skopeo jq --command "skopeo --override-os linux --override-arch x86_64 inspect docker://docker.io/nixos/nix:1.11 | jq -r '.Digest'" sha256:20d9485b25ecfd89204e843a962c1bd70e9cc6858d65d7f5fadc340246e2116b This argument is required. finalImageTag, if specified, this is the tag of the image to be created. Note it is never used to fetch the image since we prefer to rely on the immutable digest ID. By default it's latest. sha256 is the checksum of the whole fetched image. This argument is required. os, if specified, is the operating system of the fetched image. By default it's linux. arch, if specified, is the cpu architecture of the fetched image. By default it's x86_64.
exportImage This function is analogous to the docker export command, in that can used to flatten a Docker image that contains multiple layers. It is in fact the result of the merge of all the layers of the image. As such, the result is suitable for being imported in Docker with docker import. Using this function requires the kvm device to be available. The parameters of exportImage are the following: Docker export exportImage { fromImage = someLayeredImage; fromImageName = null; fromImageTag = null; name = someLayeredImage.name; } The parameters relative to the base image have the same synopsis as described in , except that fromImage is the only required argument in this case. The name argument is the name of the derivation output, which defaults to fromImage.name.
shadowSetup This constant string is a helper for setting up the base files for managing users and groups, only if such files don't exist already. It is suitable for being used in a runAsRoot script for cases like in the example below: Shadow base files buildImage { name = "shadow-basic"; runAsRoot = '' #!${stdenv.shell} ${shadowSetup} groupadd -r redis useradd -r -g redis redis mkdir /data chown redis:redis /data ''; } Creating base files like /etc/passwd or /etc/login.defs are necessary for shadow-utils to manipulate users and groups.