
>>> Functional Programming
>>> Using the example of Haskell

Name: Amedeo Molnár - nek0@nek0.eu
Date: 20. January 2020

mailto:nek0@nek0.eu

>>> Overview

1. Introduction

2. Main differences to imperative programming

3. Examples

4. Fields of Application

5. Conclusion

[~]$ _ [2/10]

>>> Languages

[1. Introduction]$ _ [3/10]

>>> Languages

[1. Introduction]$ _ [3/10]

>>> Languages

[1. Introduction]$ _ [3/10]

>>> Languages

[1. Introduction]$ _ [3/10]

>>> Languages

[1. Introduction]$ _ [3/10]

>>> Languages

[1. Introduction]$ _ [3/10]

>>> Core Concepts
* Purity

A pure function must produce the same result given the same input and
does not rely on or alter external state.

* Non-imperativeness

A function is not a sequence of commands, but a nesting of other
functions.

* First Class Citizenship

Functions are equal to other data objects and can thus be passed as
function arguments or be computation results themselves.

* Closures

Functions can only access variables inside the context they have been
created in. This is possible even when the function itself has left
this context. In this case the variable values are frozen at the
moment of departure inside the function.

* Lambdas

A function definition can take place without an explicit name in the
position of a function symbol.

[1. Introduction]$ _ [4/10]

>>> Core Concepts
* Purity
A pure function must produce the same result given the same input and
does not rely on or alter external state.

* Non-imperativeness

A function is not a sequence of commands, but a nesting of other
functions.

* First Class Citizenship

Functions are equal to other data objects and can thus be passed as
function arguments or be computation results themselves.

* Closures

Functions can only access variables inside the context they have been
created in. This is possible even when the function itself has left
this context. In this case the variable values are frozen at the
moment of departure inside the function.

* Lambdas

A function definition can take place without an explicit name in the
position of a function symbol.

[1. Introduction]$ _ [4/10]

>>> Core Concepts
* Purity
A pure function must produce the same result given the same input and
does not rely on or alter external state.

* Non-imperativeness
A function is not a sequence of commands, but a nesting of other
functions.

* First Class Citizenship

Functions are equal to other data objects and can thus be passed as
function arguments or be computation results themselves.

* Closures

Functions can only access variables inside the context they have been
created in. This is possible even when the function itself has left
this context. In this case the variable values are frozen at the
moment of departure inside the function.

* Lambdas

A function definition can take place without an explicit name in the
position of a function symbol.

[1. Introduction]$ _ [4/10]

>>> Core Concepts
* Purity
A pure function must produce the same result given the same input and
does not rely on or alter external state.

* Non-imperativeness
A function is not a sequence of commands, but a nesting of other
functions.

* First Class Citizenship
Functions are equal to other data objects and can thus be passed as
function arguments or be computation results themselves.

* Closures

Functions can only access variables inside the context they have been
created in. This is possible even when the function itself has left
this context. In this case the variable values are frozen at the
moment of departure inside the function.

* Lambdas

A function definition can take place without an explicit name in the
position of a function symbol.

[1. Introduction]$ _ [4/10]

>>> Core Concepts
* Purity
A pure function must produce the same result given the same input and
does not rely on or alter external state.

* Non-imperativeness
A function is not a sequence of commands, but a nesting of other
functions.

* First Class Citizenship
Functions are equal to other data objects and can thus be passed as
function arguments or be computation results themselves.

* Closures
Functions can only access variables inside the context they have been
created in. This is possible even when the function itself has left
this context. In this case the variable values are frozen at the
moment of departure inside the function.

* Lambdas

A function definition can take place without an explicit name in the
position of a function symbol.

[1. Introduction]$ _ [4/10]

>>> Core Concepts
* Purity
A pure function must produce the same result given the same input and
does not rely on or alter external state.

* Non-imperativeness
A function is not a sequence of commands, but a nesting of other
functions.

* First Class Citizenship
Functions are equal to other data objects and can thus be passed as
function arguments or be computation results themselves.

* Closures
Functions can only access variables inside the context they have been
created in. This is possible even when the function itself has left
this context. In this case the variable values are frozen at the
moment of departure inside the function.

* Lambdas
A function definition can take place without an explicit name in the
position of a function symbol.

[1. Introduction]$ _ [4/10]

>>> Main differences to imperative programming

* Avoidance of side effects
* Immutable variables
* No loops
* No state

[2. Main differences to imperative programming]$ _ [5/10]

>>> Main differences to imperative programming

* Avoidance of side effects

* Immutable variables
* No loops
* No state

[2. Main differences to imperative programming]$ _ [5/10]

>>> Main differences to imperative programming

* Avoidance of side effects
* Immutable variables

* No loops
* No state

[2. Main differences to imperative programming]$ _ [5/10]

>>> Main differences to imperative programming

* Avoidance of side effects
* Immutable variables
* No loops

* No state

[2. Main differences to imperative programming]$ _ [5/10]

>>> Main differences to imperative programming

* Avoidance of side effects
* Immutable variables
* No loops
* No state

[2. Main differences to imperative programming]$ _ [5/10]

>>> Examples

sq :: (Floating a) => a -> a
sq x = x * x

ringArea :: (Floating a) => a -> a -> a
ringArea r1 r2 = pi * (sq r1 - sq r2)

fib :: Integer -> Integer
fib 0 = 0
fib 1 = 1
fib n = fib (n - 2) + fib (n - 1)

[3. Examples]$ _ [6/10]

>>> Advanced Example
gifts :: [String]
gifts =
["And a partridge in a pear tree!", "Two turtle doves,", "Three french hens,"
, "Four calling birds,", "Five golden rings,", "Six geese a-laying,"
, "Seven swans a-swimming,", "Eight maids a-milking,", "Nine ladies dancing,"
, "Ten lords a-leaping,", "Eleven pipers piping,", "Twelve drummers drumming,"
]

days :: [String]
days = [
"first", "second", "third", "fourth", "fifth", "sixth", "seventh", "eighth",
"ninth", "tenth", "eleventh", "twelfth"]

verseOfTheDay :: Int -> String
verseOfTheDay day =
"On the " ++ days !! day ++ " day of Christmas my true love gave to me... \n"
++ concat (map (++ "\n") [dayGift day d | d <- [day, day-1..0]]) ++ "\n"
where
dayGift 0 _ = "A partridge in a pear tree!"
dayGift _ gift = gifts !! gift

main :: IO ()
main = putStrLn (concatMap verseOfTheDay [0..11])
[3. Examples]$ _ [7/10]

>>> Fields of Application

* Big Data
* Finance Sector
* Science
* Virtually everywhere

[4. Fields of Application]$ _ [8/10]

>>> Fields of Application

* Big Data

* Finance Sector
* Science
* Virtually everywhere

[4. Fields of Application]$ _ [8/10]

>>> Fields of Application

* Big Data
* Finance Sector

* Science
* Virtually everywhere

[4. Fields of Application]$ _ [8/10]

>>> Fields of Application

* Big Data
* Finance Sector
* Science

* Virtually everywhere

[4. Fields of Application]$ _ [8/10]

>>> Fields of Application

* Big Data
* Finance Sector
* Science
* Virtually everywhere

[4. Fields of Application]$ _ [8/10]

>>> Literature recommendations

* Learn you a Haskell for Great Good!
* Real World Haskell
* Parallel and Concurrent Programming in Haskell
* The Haskell School of Music

[5. Conclusion]$ _ [9/10]

http://learnyouahaskell.com/
http://book.realworldhaskell.org/
https://www.oreilly.com/library/view/parallel-and-concurrent/9781449335939
http://www.cs.yale.edu/homes/hudak/Papers/HSoM.pdf

Thank you for your attention!
This presentation is available for download at:
https://github.com/nek0/presentation-fp-haskell

https://github.com/nek0/presentation-fp-haskell

	Introduction
	Main differences to imperative programming
	Examples
	Fields of Application
	Conclusion

