tracer/src/MindMap.hs
2018-07-19 04:51:07 +02:00

165 lines
6 KiB
Haskell

module MindMap where
import Affection as A
import Algebra.Graph as AG
import System.Random (randomRIO)
import Control.Monad (foldM)
import Linear
import qualified Data.Matrix as M
import Data.Maybe (fromJust)
import Data.List (find)
-- internal imports
import Types
friction :: Double
friction = 0.1
l0 :: Double
l0 = 1
springKonst :: Double
springKonst = 0.8 -- N/m
buildMindMap :: Int -> Word -> IO (AG.Graph MMNode)
buildMindMap num difficulty = do
mainPath <- (return . path . (MMNode (V2 0 0) 0 :)) =<< foldM
makeVert
[MMNode (V2 10 10) (-1)]
[1 .. (1 + fromIntegral difficulty)]
aux <- randomRIO (0, floor (fromIntegral num * 5 / 8 :: Double)) :: IO Int
auxPaths <- mapM (\_ -> do
len <- randomRIO (0, num `div` 10)
(path . (MMNode (V2 0 0) 0 :)) <$> foldM makeVert [] [1 .. len]
)
[0 .. aux]
return $ overlays (mainPath : auxPaths)
where
makeVert :: [MMNode] -> Int -> IO [MMNode]
makeVert acc a = do
vert <- randomRIO (1, num)
x <- randomRIO (4.5, 5.5) :: IO Double
y <- randomRIO (4.5, 5.5) :: IO Double
-- A.logIO A.Debug ("pos: " ++ show (x, y))
let node = MMNode (V2 x y) vert
if node `elem` acc
then makeVert acc a
else return (node : acc)
springField :: AG.Graph MMNode -> AG.Graph MMNode
springField =
calcul
where
calcul graph =
let deltas = calculDelta2 graph
in if any (\(_, v) -> len v > 1)
-- (A.log A.Debug ("deltas: " ++ show deltas) deltas)
deltas
then
let deltaNodes = map
(\n -> n { mmPos = mmPos n + snd (fromJust (find ((== mmId n) . fst) deltas))})
(vertexList graph)
ngraph = fmap (\n -> fromJust (find ((== mmId n) . mmId) deltaNodes)) graph
in -- A.log A.Debug "\n\nRECURSING\n"
(calcul ngraph)
else graph
len :: (Floating a, Metric f) => f a -> a
len v = sqrt (v `dot` v)
normv :: (Eq a, Floating a) => V2 a -> V2 a
normv v@(V2 0 0) = v
normv v = signorm v
buildFloorMap :: AG.Graph MMNode -> (M.Matrix Int, AG.Graph MMNode)
buildFloorMap inGraph =
( foldl
(\amat (MMNode (V2 r c) i) -> M.setElem (if i == 0 then -2 else i)
(floor r + 2, floor c + 2) amat
)
emptyFloor
floorGraph
, fmap (\n -> n { mmPos = (+ 2) <$> mmPos n} ) floorGraph
)
where
normGraph =
let minVert = V2
( minimum $ map ((\(V2 r _) -> r) . mmPos) (vertexList inGraph))
( minimum $ map ((\(V2 _ c) -> c) . mmPos) (vertexList inGraph))
maxVert = V2
( maximum $ map ((\(V2 r _) -> r) . mmPos) (vertexList redGraph))
( maximum $ map ((\(V2 _ c) -> c) . mmPos) (vertexList redGraph))
redGraph = fmap (\n -> n { mmPos = mmPos n - minVert }) inGraph
in fmap (\n -> n { mmPos = mmPos n / maxVert }) redGraph
floorGraph = fmap (\n -> n { mmPos = (* 45) <$> mmPos n }) normGraph
emptyFloor = M.matrix 50 50 (const 0)
manhattan :: AG.Graph MMNode -> M.Matrix Int -> M.Matrix TileState
manhattan graph input =
walls intermediate
where
mandistance :: (Int, Int) -> (Int, Int) -> Int
mandistance (r1, c1) (r2, c2) = abs (r1 - r2) + abs (c1 - c2)
dmin = M.nrows input + M.ncols input
calculate (r, c) = foldl (\acc@(accdmin, _) (MMNode (V2 vr vc) ind) ->
let d = mandistance (r, c) (floor vr, floor vc)
in if d < accdmin
then (d, ind)
else acc
) (dmin, 0) verts
verts = vertexList graph
coords = (,) <$> [1 .. M.nrows input] <*> [1 .. M.ncols input]
intermediate = M.matrix (M.nrows input) (M.ncols input) (snd . calculate)
walls inter = foldl (\accmat (r, c) ->
wallnotwall inter accmat r c
) emptyMM coords
emptyMM = M.matrix (M.nrows input) (M.ncols input) (const Offi)
wallnotwall inter mat r c
| M.safeGet (r - 1) (c - 1) mat /= Just Wall &&
M.safeGet r (c - 1) mat == Just Wall &&
M.safeGet (r - 1) c mat == Just Wall = M.setElem Wall (r, c) mat
| (M.safeGet r (c - 1) inter /= M.safeGet r c inter) &&
(M.safeGet r (c - 1) mat /= Just Wall) = M.setElem Wall (r, c) mat
| (M.safeGet (r - 1) c inter /= M.safeGet r c inter) &&
(M.safeGet (r - 1) c mat /= Just Wall) = M.setElem Wall (r, c) mat
| (M.safeGet r (c + 1) inter /= M.safeGet r c inter) &&
(M.safeGet r (c + 1) mat /= Just Wall) = M.setElem Wall (r, c) mat
| (M.safeGet (r + 1) c inter /= M.safeGet r c inter) &&
(M.safeGet (r + 1) c mat /= Just Wall) = M.setElem Wall (r, c) mat
| otherwise = mat
calculDelta2 :: AG.Graph MMNode -> [(Int, V2 Double)]
calculDelta2 graph =
let accel2 = sproing2 (zip (vertexList graph) (repeat $ V2 0 0))
sproing2 [] = []
sproing2 ((cnode, cacc):nodeaccs) =
( mmId cnode
, if (len (V2 100 100 * normv deltasum)) < len deltasum
then V2 100 100 * normv deltasum
else deltasum
) : sproing2 dnodeaccs
where
deltasum = cacc + sum deltas
deltas = map ((fmap (* friction)) . doForce) (map fst nodeaccs)
doForce n
-- are the nodes identic? (unlikely)
| mmId cnode == mmId n =
V2 0 0
-- Is the cnode pointing to the currently mapped node?
| n `elem` map snd (filter ((== cnode) . fst) $ edgeList graph) =
fmap (* (springKonst * (distance (mmPos n) (mmPos cnode) - l0)))
(normv (mmPos n - mmPos cnode))
-- Is the cnode being pointed to from the currently mapped node?
| cnode `elem` map snd (filter ((== n) . fst) $ edgeList graph) =
- fmap (* (springKonst * (distance (mmPos n) (mmPos cnode) - l0)))
(normv (mmPos cnode - mmPos n))
-- Do gravitational push in all other cases
| otherwise =
- fmap (* (1000 / ((distance (mmPos cnode) (mmPos n)) ^ (2 :: Int))))
(normv (mmPos n - mmPos cnode))
dnodeaccs = zipWith (\(n, a) d -> (n, a - d)) nodeaccs deltas
in accel2