tracer/src/Test.hs

536 lines
18 KiB
Haskell

module Test where
import Affection as A
import qualified SDL
import NanoVG hiding (V2(..))
import Control.Monad (when, void)
import Control.Monad.IO.Class (liftIO)
import Control.Concurrent.MVar
import Control.Concurrent (forkIO)
import Data.Map.Strict as Map
import qualified Data.Set as S
import qualified Data.Text as T
import Data.Matrix as M
import Data.Ecstasy as E
import Data.Maybe
import Data.List as L (sortOn, partition)
import System.Random (randomRIO)
import Linear hiding (E)
import Foreign.C.Types (CFloat(..))
-- internal imports
import Interior
import Util
import Types
import Floorplan
import NPC
loadMap :: Affection UserData ()
loadMap = do
ud <- getAffection
let (Subsystems _ m) = subsystems ud
ctx = nano ud
uu <- partSubscribe m movePlayer
future <- liftIO $ newEmptyMVar
progress <- liftIO $ newMVar 0
_ <- liftIO $ forkIO $ loadMapFork ud future progress
putAffection ud
{ stateData = None
, uuid = [uu]
, stateMVar = future
, stateProgress = progress
}
loadMapFork
:: UserData
-> MVar (SystemState Entity IO, StateData)
-> MVar Float
-> IO ()
loadMapFork ud future progress = do
let loadSteps = 16
fc = FloorConfig
(10, 10)
[]
(50, 50)
_ <- liftIO $ swapMVar progress (1 / loadSteps)
(mat, gr) <- buildHallFloorIO fc progress (1 / loadSteps)
_ <- liftIO $ swapMVar progress (11 / loadSteps)
let imgmat = convertTileToImg mat
exits = Prelude.foldl
(\acc coord@(r, c) -> if imgmat M.! coord == Just ImgEmpty
then ReachPoint RoomExit (V2 r c) NE : acc
else acc
)
[]
((,) <$> [1 .. nrows mat] <*> [1 .. ncols mat])
_ <- liftIO $ swapMVar progress (12 / loadSteps)
(inter, rps) <- placeInteriorIO mat imgmat exits gr
_ <- liftIO $ swapMVar progress (13 / loadSteps)
logIO A.Debug ("number of reachpoints: " ++ show (length rps))
let nnex = Prelude.filter (\p -> pointType p /= RoomExit) rps
npcposs <- placeNPCs inter mat rps gr 50 -- (length nnex)
_ <- liftIO $ swapMVar progress (14 / loadSteps)
A.logIO A.Debug $ "number of placed NPCs: " ++ show (length npcposs)
(nws, _) <- yieldSystemT (worldState ud) $ do
void $ createEntity $ newEntity
{ pos = Just (V2 10.5 10.5)
, vel = Just (V2 0 0)
, player = Just ()
, rot = Just SE
, anim = Just $ AnimState (AnimId 0 "standing" SE) 0 0
}
void $ liftIO $ swapMVar progress (15 / loadSteps)
void $ mapM_ (\npcpos@(V2 nr nc) -> do
fact <- liftIO $ randomRIO (0.5, 1.5)
future <- liftIO newEmptyMVar
_ <- liftIO $ forkIO $ getPath (fmap floor npcpos) future nnex inter
void $ createEntity $ newEntity
{ pos = Just (V2 (nr + 0.5) (nc + 0.5))
, vel = Just (V2 0 0)
, velFact = Just fact
, rot = Just SE
, npcState = Just (NPCStanding 0 future)
, anim = Just $ AnimState (AnimId 0 "standing" SE) 0 0
}
) npcposs
void $ liftIO $ swapMVar progress (16 / loadSteps)
putMVar future (nws, MenuData
{ mapMat = mat
, imgMat = M.fromList (nrows inter) (ncols inter) $
Prelude.map
(\a -> if a == Just ImgEmpty then Nothing else a)
(M.toList inter)
, initCoords = (0, 500)
, reachPoints = rps
})
mouseToPlayer :: V2 Int32 -> Affection UserData ()
mouseToPlayer mv2 = do
ud <- getAffection
(V2 rx ry) <- liftIO $ relativizeMouseCoords mv2
let dr = (ry / sin (atan (1/2)) / 2) + rx
dc = rx - (ry / sin (atan (1/2)) / 2)
(nws, _) <- liftIO $ yieldSystemT (worldState ud) $
emap allEnts $ do
with player
pure $ unchanged
{ vel = Set $ 4 * V2 dr dc
}
putAffection ud
{ worldState = nws
}
movePlayer :: MouseMessage -> Affection UserData ()
movePlayer (MsgMouseMotion _ _ _ [SDL.ButtonLeft] m _) = mouseToPlayer m
movePlayer (MsgMouseButton _ _ SDL.Pressed _ SDL.ButtonLeft _ m) =
mouseToPlayer m
movePlayer (MsgMouseButton _ _ SDL.Released _ SDL.ButtonLeft _ _) = do
ud <- getAffection
(nws, _) <- liftIO $ yieldSystemT (worldState ud) $
emap allEnts $ do
with player
pure $ unchanged
{ vel = Set $ V2 0 0
}
putAffection ud
{ worldState = nws
}
movePlayer _ = return ()
drawMap :: Affection UserData ()
drawMap = do
ud <- getAffection
let ctx = nano ud
case stateData ud of
None -> liftIO $ do
progress <- readMVar (stateProgress ud)
drawLoadScreen ud progress
_ -> do
dt <- getDelta
(_, (playerPos, posanims)) <- liftIO $ yieldSystemT (worldState ud) $ do
pc <- fmap head $ efor allEnts $ do
with player
with pos
query pos
posanims <- efor allEnts $ do
with anim
with pos
stat <- query anim
pos' <- query pos
return (pos', stat)
return (pc, posanims)
let V2 pr pc = playerPos
mat = imgMat (stateData ud)
cols = fromIntegral (ncols mat)
rows = fromIntegral (nrows mat)
tileWidth = 64 :: Double
tileHeight = 32 :: Double
x = realToFrac $ 640 + ((1 - pc) + (1 - pr)) * (tileWidth / 2)
y = realToFrac $ 360 + ((1 - pr) - (1 - pc)) * (tileHeight / 2)
partposanims = M.fromList
(nrows $ mapMat $ stateData ud)
(ncols $ mapMat $ stateData ud)
((reverse . fst)
(Prelude.foldl
(\(done, proc) coord ->
let (ndone, nproc) = processList proc coord
in (ndone : done, nproc)
)
([], posanims)
((,)
<$> [1 .. (nrows $ mapMat $ stateData ud)]
<*> [1 .. (ncols $ mapMat $ stateData ud)]
)
)
)
processList
:: [(V2 Double, AnimState)]
-> (Int, Int)
-> ([(V2 Double, AnimState)], [(V2 Double, AnimState)])
processList list coord@(r, c) =
let delimiter (V2 nr nc, _) =
floor nr == r && floor nc == c
in L.partition delimiter list
liftIO $ do -- draw floor
beginPath ctx
moveTo ctx (x + realToFrac tileWidth / 2) y
lineTo ctx
(x + cols * (realToFrac tileWidth / 2))
(y - (realToFrac tileHeight / 2) * (cols - 1))
lineTo ctx
(x + (realToFrac tileWidth / 2) * (cols + rows - 1))
(y + (rows - cols) * (realToFrac tileHeight / 2))
lineTo ctx
(x + (realToFrac tileWidth / 2) * rows)
(y + (realToFrac tileHeight / 2) * (rows - 1))
closePath ctx
fillColor ctx (rgb 255 255 255)
fill ctx
mapM_ (\(i, ls) -> mapM_
(\(j, t) -> drawTile ud ctx (partposanims M.! (i, j)) pr pc i j t)
(reverse $ zip [1..] ls))
(zip [1..] (toLists mat))
fontSize ctx 20
fontFace ctx (assetFonts ud Map.! FontBedstead)
textAlign ctx (S.fromList [AlignCenter,AlignTop])
fillColor ctx (rgb 255 128 0)
textBox ctx 0 0 200 ("FPS: " `T.append` T.pack (Prelude.take 5 $ show (1/dt)))
drawTile
:: UserData
-> Context
-> [(V2 Double, AnimState)]
-> Double
-> Double
-> Int
-> Int
-> Maybe ImgId
-> IO ()
drawTile ud ctx posanims pr pc row col img =
when ((realToFrac x > -tileWidth && realToFrac y > -tileHeight) &&
((realToFrac x :: Double) < 1280 &&
(realToFrac (y - (74 - (realToFrac tileHeight :: CFloat))) :: Double) < 720)) $
do
let (lt, ge) = L.partition delimiter sorted
save ctx
mapM_ drawAnim lt
when (isJust img) drawImage
mapM_ drawAnim ge
restore ctx
where
delimiter (V2 nr nc, _) =
any (\m -> nr < fromIntegral (floor nr :: Int) + m) maxrs &&
any (\m -> nc > fromIntegral (floor nc :: Int) + m) mincs
ai = assetImages ud
anims = assetAnimations ud
tileWidth = 64 :: Double
tileHeight = 32 :: Double
sorted = sortOn (\(V2 sr sc, _) -> sc + sr * fromIntegral col) posanims
minrs = Prelude.map (fst . matmin) mb
maxrs = Prelude.map (fst . matmax) mb
mincs = Prelude.map (snd . matmin) mb
maxcs = Prelude.map (snd . matmax) mb
x = realToFrac $ 640 + ((fromIntegral col - pc) +
(fromIntegral row - pr)) * (tileWidth / 2) :: CFloat
y = realToFrac $ 360 - (tileHeight / 2) + ((fromIntegral row - pr) -
(fromIntegral col - pc)) * (tileHeight / 2) :: CFloat
dist = distance (V2 (fromIntegral row) (fromIntegral col))
(V2 (realToFrac pr - 1) (realToFrac pc)) / 4
fact =
if (pr <= fromIntegral row + minimum maxrs &&
pc >= fromIntegral col + maximum mincs) &&
isWall (fromJust img)
then min 1 dist
else 1
mb = imgObstacle img
drawAnim (V2 nr nc, as) = do
let ax = realToFrac $ 640 + ((nc - pc) + (nr - pr)) * 32
ay = realToFrac $ 360 + ((nr - pr) - (nc - pc)) * 16
a = anims Map.! asId as
beginPath ctx
paint <- imagePattern ctx (ax - 32) (ay - 58) 64 74 0
(animSprites a !! asCurrentFrame as) 1
rect ctx (ax - 32) (ay - 58) 64 74
fillPaint ctx paint
fill ctx
drawImage = do
beginPath ctx
paint <- imagePattern
ctx x (y - (74 - realToFrac tileHeight))
(realToFrac tileWidth) 74
0
(ai Map.! fromJust img)
fact
rect ctx x (y - (74 - realToFrac tileHeight)) (realToFrac tileWidth) 74
fillPaint ctx paint
fill ctx
updateMap :: Double -> Affection UserData ()
updateMap dt = do
ud <- getAffection
isFut <- liftIO $ isEmptyMVar (stateMVar ud)
if not isFut && stateData ud == None
then do
liftIO $ logIO A.Debug "Loaded game data"
Just (nws, mendat) <- liftIO $ tryTakeMVar (stateMVar ud)
putAffection ud
{ worldState = nws
, stateData = mendat
}
else do
let direction :: V2 Double -> Direction -> Direction
direction vel'@(V2 vr _) rot' = if sqrt (vel' `dot` vel') > 0
then
let xuu =
acos ((vel' `dot` V2 0 1) /
sqrt (vel' `dot` vel')) / pi * 180
xu = if vr < 0 then 360 - xuu else xuu
d
| xu < 22.5 = NE
| xu > 22.5 && xu < 67.5 = E
| xu > 67.5 && xu < 112.5 = SE
| xu > 112.5 && xu < 157.5 = S
| xu > 157.5 && xu < 202.5 = SW
| xu > 202.5 && xu < 247.5 = W
| xu > 247.5 && xu < 292.5 = NW
| xu > 292.5 && xu < 337.5 = N
| xu > 337.5 = NE
| otherwise = NE
in d
else rot'
(nws, _) <- liftIO $ yieldSystemT (worldState ud) $ do
emap allEnts $ do
with anim
stat <- query anim
let an = assetAnimations ud Map.! asId stat
ntime = asElapsedTime stat + dt
nstate = if ntime > fromIntegral (asCurrentFrame stat) *
(animDuration an / fromIntegral (length $ animSprites an))
then
let nframe = asCurrentFrame stat + 1
in case animPlay an of
APLoop ->
let (nnframe, nntime) =
if nframe >= length (animSprites an)
then (0, 0)
else (nframe, ntime)
in stat
{ asCurrentFrame = nnframe
, asElapsedTime = nntime
}
APOnce ->
let nnframe = if nframe >= length (animSprites an)
then nframe - 1
else nframe
in stat
{ asCurrentFrame = nnframe
, asElapsedTime = ntime
}
else
stat
{ asElapsedTime = ntime
}
return $ unchanged
{ anim = Set nstate
}
emap allEnts $ do
without player
with vel
with velFact
with pos
with rot
with anim
pos' <- query pos
vel' <- query vel
rot' <- query rot
fact' <- query velFact
stat <- query anim
let npos = pos' + fmap (* (dt * fact')) vel'
aId = asId stat
nstat = case aiName aId of
"walking"
| sqrt (vel' `dot` vel') > 0 ->
stat
{ asId = aId
{ aiDirection = direction vel' rot'
}
}
| otherwise ->
stat
{ asId = aId
{ aiDirection = direction vel' rot'
, aiName = "standing"
}
, asCurrentFrame = 0
}
"standing"
| sqrt (vel' `dot` vel') > 0 ->
stat
{ asId = aId
{ aiDirection = direction vel' rot'
, aiName = "walking"
}
, asCurrentFrame = 0
}
| otherwise ->
stat
{ asId = aId
{ aiDirection = direction vel' rot'
}
}
x -> error ("unknown animation name" ++ x)
ent = unchanged
{ pos = Set npos
, rot = Set $ direction vel' rot'
, anim = Set nstat
}
return ent
emap allEnts $ do
with player
with vel
with pos
with rot
with anim
pos'@(V2 pr pc) <- query pos
vel' <- query vel
rot' <- query rot
stat <- query anim
let npos = pos' + fmap (* dt) vel'
dpos@(V2 dpr dpc) = npos - pos'
aId = asId stat
nstat = case aiName aId of
"walking"
| sqrt (colldpos `dot` colldpos) > 0 ->
stat
{ asId = aId
{ aiDirection = direction vel' rot'
}
}
| otherwise ->
stat
{ asId = aId
{ aiDirection = direction vel' rot'
, aiName = "standing"
}
, asCurrentFrame = 0
}
"standing"
| sqrt (colldpos `dot` colldpos) > 0 ->
stat
{ asId = aId
{ aiDirection = direction vel' rot'
, aiName = "walking"
}
, asCurrentFrame = 0
}
| otherwise ->
stat
{ asId = aId
{ aiDirection = direction vel' rot'
}
}
x -> error ("unknown animation name" ++ x)
len = sqrt (dpos `dot` dpos)
lll = (,)
<$> (
if dpr < 0
then [(floor dpr :: Int) .. 0]
else [0 .. (ceiling dpr :: Int)])
<*> (
if dpc < 0
then [(floor dpc :: Int) .. 0]
else [0 .. (ceiling dpc :: Int)])
colldpos = dpos * Prelude.foldl
(\acc a -> let ret = checkBoundsCollision2 pos' npos dt acc a
in A.log A.Verbose (show ret) ret)
(V2 1 1)
(
concatMap
(\(dr, dc) ->
let bs = fromMaybe [] (imgObstacle <$> M.safeGet
(fromIntegral $ floor pr + dr)
(fromIntegral $ floor pc + dc)
(imgMat (stateData ud)))
in Prelude.map (\(Boundaries (minr, minc) (maxr, maxc))->
Boundaries
(minr + fromIntegral dr, minc + fromIntegral dc)
(maxr + fromIntegral dr, maxc + fromIntegral dc)
) bs
)
lll -- (A.log A.Verbose (show lll ++ " " ++ show len) lll)
)
ent = unchanged
{ pos = Set $ pos' + colldpos
, rot = Set (direction vel' rot')
, anim = Set nstat
}
return ent
updateNPCs
(imgMat $ stateData ud)
(Prelude.filter
(\p -> pointType p /= RoomExit)
(reachPoints $ stateData ud)
)
dt
putAffection ud
{ worldState = nws
}
checkBoundsCollision2
:: V2 Double
-> V2 Double
-> Double
-> V2 Double
-> Boundaries Double
-> V2 Double
checkBoundsCollision2
pre@(V2 pr pc) nex dt acc (Boundaries (minr, minc) (maxr, maxc))
| colltr < dt && colltc < dt = V2 0 0
| colltr < dt && incol = V2 0 1 * acc
| colltc < dt && inrow = V2 1 0 * acc
| otherwise = acc
where
V2 vr vc = fmap (/ dt) (nex - pre)
colltr
| vr > 0 && prr <= maxr =
((fromIntegral (floor pr :: Int) + minr - 0.15) - pr) / vr
| vr < 0 && prr >= minr =
((fromIntegral (floor pr :: Int) + maxr + 0.15) - pr) / vr
| otherwise = dt
colltc
| vc > 0 && prc <= maxc =
((fromIntegral (floor pc :: Int) + minc - 0.15) - pc) / vc
| vc < 0 && prc >= minc =
((fromIntegral (floor pc :: Int) + maxc + 0.15) - pc) / vc
| otherwise = dt
inrow = pr > minr && pr < maxr
incol = pc > minc && pc < maxc
prr = pr - fromIntegral (floor pr :: Int)
prc = pc - fromIntegral (floor pc :: Int)