tracer/src/Floorplan.hs
2018-09-08 14:05:07 +02:00

485 lines
16 KiB
Haskell

module Floorplan where
import Data.Matrix (Matrix(..))
import qualified Data.Matrix as M
import qualified Data.Text as T
import Data.Maybe
import Linear (V2(..))
import Control.Monad (foldM)
import Control.Concurrent.MVar
import System.Random
import Types.Map
buildHallFloorIO
:: FloorConfig
-> MVar (Float, T.Text)
-> Float
-> IO (Matrix TileState, [Graph])
buildHallFloorIO fc progress increment = do
rand <- newStdGen
modifyMVar_ progress (return . (\(p, _) ->
( p + increment
, "New RNG"
)))
let empty = emptyFloor fc
modifyMVar_ progress (return . (\(p, _) ->
( p + increment
, "Built empty floor"
)))
let (g1, withElv) = buildElevator fc (placeHalls rand fc empty)
modifyMVar_ progress (return . (\(p, _) ->
( p + increment
, "Placed Elevator"
)))
let (g2, withIW) = buildInnerWalls g1 withElv
modifyMVar_ progress (return . (\(p, _) ->
( p + increment
, "Built inner walls"
)))
let withOW = buildOuterWalls withIW
modifyMVar_ progress (return . (\(p, _) ->
( p + increment
, "built outer walls"
)))
let closed = closeOffices withOW
modifyMVar_ progress (return . (\(p, _) ->
( p + increment
, "Closed offices"
)))
let doorgraph = buildDoorsGraph closed
modifyMVar_ progress (return . (\(p, _) ->
( p + increment
, "Doorgraph"
)))
doors <- buildDoors closed doorgraph
modifyMVar_ progress (return . (\(p, _) ->
( p + increment
, "Build doors"
)))
let (_, facils) = buildFacilities g2 fc doors
modifyMVar_ progress (return . (\(p, _) ->
( p + increment
, "Build facilities"
)))
return (facils, doorgraph)
emptyFloor :: FloorConfig -> Matrix TileState
emptyFloor fc =
let (rows, cols) = fcSize fc
in M.matrix rows cols (const Unde)
buildElevator
:: FloorConfig
-> (StdGen, Matrix TileState)
-> (StdGen, Matrix TileState)
buildElevator fc (gen, empty) =
let (V2 row col) = fcElevator fc
boxCoord x = (,) <$> [row - x .. row + x] <*> [col - x .. col + x]
buildShaft = foldl
(\acc coord -> M.setElem (replaceTile (acc M.! coord) Hall) coord acc)
(foldl (flip $ M.setElem Wall) empty (boxCoord 2))
(boxCoord 5)
elvDoor = M.setElem Door (row + 2, col) buildShaft
in (gen, foldl ( flip $ M.setElem Elev) elvDoor (boxCoord 1))
placeHalls
:: StdGen
-> FloorConfig
-> Matrix TileState
-> (StdGen, Matrix TileState)
placeHalls rng fc input =
doHalls rng
[Boundaries (1,1) (nrows input, ncols input)]
(fcElevator fc) 5 input
where
doHalls
:: StdGen
-> [Boundaries Int]
-> (V2 Int)
-> Int
-> Matrix TileState
-> (StdGen, Matrix TileState)
doHalls rand bs cross wmax mat =
foldl (\(agen, amat) b ->
let (row, g1) = randomR
(fst (matmin b) + 10, fst (matmax b) - 10) agen
(col, g2) = randomR
(snd (matmin b) + 10, snd (matmax b) - 10) g1
-- (nw, g3) = randomR (2, wmax) g2
(nbs, nmat) = buildHall cross 3 b amat
in
-- if hallRatio nmat < 0.33 && wmax - 1 >= 2
if wmax - 1 >= 3 &&
all (\(Boundaries (minr, minc) (maxr, maxc)) ->
maxr - minr > 3 && maxc - minc > 3) nbs
then doHalls g2 nbs (V2 row col) (wmax -1) nmat
else (g2, nmat)
) (rand, mat) bs
boundSize :: Boundaries Int -> Int
boundSize (Boundaries mi ma) =
(fst ma - fst mi) * (snd ma - snd mi)
buildHall
:: (V2 Int)
-> Int
-> Boundaries Int
-> Matrix TileState
-> ([Boundaries Int], Matrix TileState)
buildHall coord@(V2 row col) width bs mat =
let vertHalls = foldl (flip (M.mapCol
(\r cur -> if r >= fst (matmin bs) && r <= fst (matmax bs)
then replaceTile cur Hall
else cur
)))
mat
[col - (width `div` 2) .. col + (width `div` 2)]
horzHalls = foldl (flip ( M.mapRow
(\c cur -> if c >= snd (matmin bs) && c <= snd (matmax bs)
then replaceTile cur Hall
else cur
)))
vertHalls
[row - (width `div` 2) .. row + (width `div` 2)]
in ( [ Boundaries (matmin bs) (row, col)
, Boundaries (fst (matmin bs), col) (row, snd (matmax bs))
, Boundaries (row, snd (matmin bs)) (fst (matmax bs), col)
, Boundaries (row, col) (matmax bs)
]
, horzHalls
)
replaceTile :: TileState -> TileState -> TileState
replaceTile cur new
| cur == Unde = new
| otherwise = cur
hallRatio :: Matrix TileState -> Double
hallRatio mat =
let hs = foldl (\acc a -> if a == Hall then acc + 1 else acc) 0 mat :: Int
in fromIntegral hs / fromIntegral (nrows mat * ncols mat)
buildInnerWalls :: StdGen -> Matrix TileState -> (StdGen, Matrix TileState)
buildInnerWalls rng input =
let floodSearchReplace
:: StdGen
-> (Int, Int)
-> Matrix TileState
-> (StdGen, Matrix TileState)
floodSearchReplace gn coord@(row, col) mat
| mat M.! coord == Unde =
let maxRow = doRow row
doRow r
| M.safeGet (r + 1) col mat == Just Unde = doRow (r + 1)
| otherwise = r
maxCol = doCol col
doCol c
| M.safeGet row (c + 1) mat == Just Unde = doCol (c + 1)
| otherwise = c
(cr, g1) = randomR
( if maxRow - 3 < row + 3
then (row + 2, row + 2)
else (row + 3, maxRow - 3)
) gn
(cc, g2) = randomR
( if maxCol - 3 < col + 3
then (col + 2, col + 2)
else (col + 3,maxCol - 3)
) g1
(nngen, nnmat) =
if (cr - 2 > row && cr + 2 < maxRow)
&& (cc - 2 > col && cc + 2 < maxCol)
then
doCross
g2
(cr, cc)
(Boundaries coord (maxRow, maxCol))
mat
else
let btups = (,)
<$> [fst coord .. maxRow]
<*> [snd coord .. maxCol]
in
( g2
, foldl
(\acc coords ->
M.setElem (replaceTile (acc M.! coords) Offi) coords acc
) mat btups
)
doCross
:: StdGen
-> (Int, Int)
-> Boundaries Int
-> Matrix TileState
-> (StdGen, Matrix TileState)
doCross gen cd@(xr, xc) b imat =
let nbs = map (uncurry Boundaries) bs
bs =
[ (matmin b, cd)
, ((fst (matmin b), col), (row, snd (matmax b)))
, ((row, snd (matmin b)), (fst (matmax b), col))
, (cd, matmax b)
]
(ngen, crosses) = foldl
(\(agen, acc) (minb, maxb) ->
let (fc, gg1) = randomR (fst minb, fst maxb) agen
(fr, gg2) = randomR (snd minb, snd maxb) gg1
in (gg2, acc ++ [(fc, fr)])
) (gen, []) bs
horz = M.mapRow (\icol cur ->
if icol >= snd (matmin b) && icol <= snd (matmax b)
then replaceTile cur Wall
else cur
) xr imat
vert = M.mapCol (\irow cur ->
if irow >= fst (matmin b) && irow <= fst (matmax b)
then replaceTile cur Wall
else cur
) xc horz
omat = foldl
(\acc coords ->
M.setElem (replaceTile (acc M.! coords) Offi) coords acc
) vert btups
btups = (,)
<$> [fst (matmin b) .. fst (matmax b)]
<*> [snd (matmin b) .. snd (matmax b)]
in if boundSize b >= 16
then foldl
(\(agen, amat) (acr, nb) -> doCross agen acr nb amat)
(ngen, omat)
(zip crosses nbs)
else
(gen, omat)
in (nngen, nnmat)
| otherwise = (gn, mat)
tups mat = (,) <$> [1 .. nrows mat] <*> [1 .. ncols mat]
in foldl (\(agen, amat) cds -> floodSearchReplace agen cds amat)
(rng, input) (tups input)
closeOffices :: Matrix TileState -> Matrix TileState
closeOffices input =
let tups mat = (,) <$> [2 .. nrows mat - 1] <*> [2 .. ncols mat - 1]
isNeighbor (row, col) =
let subm = M.submatrix (row -1) (row + 1) (col - 1) (col + 1) input
in Hall `elem` M.toList subm
in foldl (\acc coord ->
if input M.! coord == Offi && isNeighbor coord
then M.setElem Wall coord acc
else acc
) input (tups input)
buildOuterWalls :: Matrix TileState -> Matrix TileState
buildOuterWalls input =
let horz :: Matrix TileState
horz =
foldl
(flip $ M.mapRow (\_ _ -> Wall))
input
[ 1
, nrows input
]
vert =
foldl
(flip $ M.mapCol (\_ _ -> Wall))
horz
[ 1
, ncols horz
]
in vert
buildFacilities
:: StdGen
-> FloorConfig
-> Matrix TileState
-> (StdGen, Matrix TileState)
buildFacilities gen fc input =
let flood ts mat coords@(cr, cc) =
let cur = mat M.! coords
altered = M.setElem ts coords mat
in
if cur == ts || cur /= Offi
then mat
else foldl (flood ts)
altered
[ (cr + 1, cc)
, (cr - 1, cc)
, (cr, cc + 1)
, (cr, cc - 1)
]
nearests = map (findNearestOffice input) (fcFacilities fc)
in foldl (\(agen, acc) x ->
let (numfac, ngen) = randomR (0 :: Int, 1 :: Int) agen
facil = if numfac == 1 then Kitc else Toil
in (ngen, flood facil acc x)
) (gen, input) nearests
findNearestOffice
:: Matrix TileState
-> (V2 Int)
-> (Int, Int)
findNearestOffice mat (V2 rrr ccc) =
let matcoord = (,) <$> [1 .. nrows mat] <*> [1 .. ncols mat]
distance :: (Int, Int) -> Int
distance (ar, ac) = (ar - rrr) ^ (2 :: Int) + (ac - ccc) ^ (2 :: Int)
inlist = zip matcoord (M.toList mat)
in foldl (\acc (xc, ts) ->
if ts == Offi && distance acc > distance xc
then xc
else acc
) (fst $ head inlist) inlist
buildDoorsGraph :: Matrix TileState -> [Graph]
buildDoorsGraph mat =
let maxCol r c
| M.safeGet r (c + 1) mat == Just Offi = maxCol r (c + 1)
| otherwise = c
buildGraph :: Matrix TileState -> [Graph] -> (Int, Int) -> [Graph]
buildGraph amat root coord@(br, bc)
| bc > ncols amat - 1 =
buildGraph amat root (br + 1, 1)
| br > nrows amat - 1 =
root
| M.safeGet br bc amat == Just Offi =
let flood acc (fr, fc) =
let ncoords = [] ++
(if (fr + 1, fc) `notElem` acc &&
M.safeGet (fr + 1) fc amat == Just Offi
then [(fr + 1, fc)]
else []) ++
(if (fr - 1, fc) `notElem` acc &&
M.safeGet (fr - 1) fc amat == Just Offi
then [(fr - 1, fc)]
else []) ++
(if (fr, fc - 1) `notElem` acc &&
M.safeGet fr (fc - 1) amat == Just Offi
then [(fr, fc - 1)]
else []) ++
(if (fr, fc + 1) `notElem` acc &&
M.safeGet fr (fc + 1) amat == Just Offi
then [(fr, fc + 1)]
else [])
in foldl flood (acc ++ ncoords) ncoords
roomcoords = flood [coord] coord
b = Boundaries
(minimum (map fst roomcoords), minimum (map snd roomcoords))
(maximum (map fst roomcoords), maximum (map snd roomcoords))
neighs = map (\(a, bx) -> (a, fromJust bx)) (filter ((/=Nothing) . snd)
[ (North, M.safeGet (fst (matmin b) - 2) (snd (matmin b)) amat)
, (South, M.safeGet (fst (matmax b) + 2) (snd (matmin b)) amat)
, (East, M.safeGet (fst (matmin b)) (snd (matmin b) - 2) amat)
, (West, M.safeGet (fst (matmin b)) (snd (matmax b) + 2) amat)
])
in
if Hall `elem` map snd neighs
then
let nroot =
if GRoom neighs b `notElem` connects (head root)
then
GHall
{ connects = connects (head root) ++ [GRoom neighs b]
} : tail root
else root
in buildGraph amat nroot (br, 1 + snd (matmax b))
else
let nroot = root ++
if GRoom neighs b `elem` root
then []
else [GRoom neighs b]
in buildGraph amat nroot (br, 1 + snd (matmax b))
| otherwise =
buildGraph amat root (br, maxCol br (bc + 1))
in buildGraph mat [GHall []] (2, 2)
buildDoors :: Matrix TileState -> [Graph] -> IO (Matrix TileState)
buildDoors = foldM placeDoors
where
placeDoors :: Matrix TileState -> Graph -> IO (Matrix TileState)
placeDoors amat (GHall conns) =
foldM placeDoors amat conns
placeDoors amat (GRoom neighs bs) =
if Hall `elem` map snd neighs
then do
let halls = filter ((== Hall) . snd) neighs
idx <- randomRIO (0, length halls - 1)
let (dir, _) = halls !! idx
case dir of
North ->
inRow
amat
(fst (matmin bs) - 1)
(snd (matmin bs), snd (matmax bs))
South ->
inRow
amat
(fst (matmax bs) + 1)
(snd (matmin bs), snd (matmax bs))
East ->
inCol
amat
(fst (matmin bs), fst (matmax bs))
(snd (matmin bs) - 1)
West ->
inCol
amat
(fst (matmin bs), fst (matmax bs))
(snd (matmax bs) + 1)
else do
idx <- randomRIO (0, length neighs - 1)
let (dir, _) = neighs !! idx
case dir of
North ->
inRow
amat
(fst (matmin bs) - 1)
(snd (matmin bs), snd (matmax bs))
South ->
inRow
amat
(fst (matmax bs) + 1)
(snd (matmin bs), snd (matmax bs))
East ->
inCol
amat
(fst (matmin bs), fst (matmax bs))
(snd (matmin bs) - 1)
West ->
inCol
amat
(fst (matmin bs), fst (matmax bs))
(snd (matmax bs) + 1)
inRow :: Matrix TileState -> Int -> (Int, Int) -> IO (Matrix TileState)
inRow mat row cols = do
col <- randomRIO cols
let tile = mat M.! (row, col)
if tile == Wall
&& length (filter
(== Wall)
(M.toList (M.submatrix (row - 1) (row + 1) col col mat)))
== 1
then
if Door `elem` M.toList (uncurry (M.submatrix row row) cols mat)
then return mat
else
return $ M.setElem Door (row, col) mat
else
inRow mat row cols
inCol :: Matrix TileState -> (Int, Int) -> Int -> IO (Matrix TileState)
inCol mat rows col = do
row <- randomRIO rows
let tile = mat M.! (row, col)
if tile == Wall
&& length (filter
(== Wall)
(M.toList (M.submatrix row row (col - 1) (col + 1) mat)))
== 1
then
if Door `elem` M.toList (uncurry M.submatrix rows col col mat)
then return mat
else
return $ M.setElem Door (row, col) mat
else
inCol mat rows col